Bayesian Estimation of the Inverse Rayleigh Process under a Non-Homogeneous Poisson Process Framework

Section: Article
Published
Dec 1, 2025
Pages
163-175

Abstract

The rationale on which this study is based is that accurate and dependable means to obtain time-dependent failure rates in repairable systems, especially in cases that are not homogeneous, are required, and the conventional models are not always in a position to meet these demands. To address this, the research targets at use of Inverse Rayleigh Process (IRP) within a Non-Homogeneous Poisson Process (NHPP) paradigm, a model of the system failures that suits the use of the stochastic model of a system. To improve the accuracy of parameter estimation, the Maximum Likelihood Estimation (MLE) approximation and Bayesian methods are studied and here the solving of the analytical problems due to intractable posterior distributions when using Laplace approximations is sought. Zooming over the simulation experiments that have been conducted on various sample sizes, evaluated through Root Mean Square Error (RMSE), shows that the Bayesian estimator in particular Bayes II prior outperforms MLE. Lastly, the proposed approaches are confirmed on the real-life failure records in the Mosul Gas Power Plant, which confirms the effectiveness of the Bayesian approach in the modeling of the coupled reliability systems in practice and more precisely in the data-scarce context

References

  1. C. Lawson, “Statistical Methods for the Reliability of Repairable Systems,” Journal of Quality Technology, vol. 33, no. 4, pp. 527–528, Oct. 2001, doi: 10.1080/00224065.2001.11980114.
  2. K. Muralidharan, “Repairable System Modeling Using Power Law Process,” in System Reliability Management, CRC Press, 2018, pp. 79–101. doi: 10.1201/9781351117661-6.
  3. L. H. Crow, “An extended reliability growth model for managing and assessing corrective actions,” in Annual Symposium Reliability and Maintainability, 2004-RAMS, 2004, pp. 73–80. https://doi.org/10.1109/RAMS.2004.1285426
  4. Ahmad, H.A. and Saieed, H.A.J., 2024. Iraqi Journal of Statistical Sciences. Iraqi Journal of Statistical Sciences, 21(2), pp.64-71. https://doi.org/10.33899/iqjoss.2024.185241
  5. Ahmed, A.F. and Sulaiman, M.S., 2024. Estimating the Transitional Probabilities of the E. Coli Gene Chain by Maximum Likelihood Method and Bayes Method. IRAOI JOURNAL OF STATISTICAL SCIENCES, 20(1). https://doi.org/10.33899/iqjoss.2024.183250
  6. Li, Q., Liu, L., Li, T. and Yao, K., 2023. Bayesian change-points detection assuming a power law process in the recurrent-event context. Communications in Statistics-Simulation and Computation, 52(12), pp.6011-6033. https://doi.org/10.1080/03610918.2021.2006711
  7. Saadoon, N., Salman, H., Az-Zo’bi, E. and Tashtoush, M., 2025. Survival Modelling of Breast and Brain Cancer Using Statistical Maximum Likelihood and SVM Techniques. Statistics, Optimization & Information Computing. https://doi.org/10.19139/soic-2310-5070-2619
  8. J. van Dyck and T. Verdonck, “Precision of power-law NHPP estimates for multiple systems with known failure rate scaling,” Reliab Eng Syst Saf, vol. 126, pp. 143–152, 2014, Doi: 10.1016/j.ress.2014.01.019 .
  9. Hussain, A.S., Mahmood, K.B., Ibrahim, I.M., Jameel, A.F., Nawaz, S. and Tashtoush, M.A., 2025. Parameters Estimation of the Gompertz-Make ham Process in Non-Homogeneous Poisson Processes: Using Modified Maximum Likelihood Estimation and Artificial Intelligence Methods. DOI: 10.13189/ms.2025.130101
  10. Shinohara, S., Manome, N., Nakajima, Y., Gunji, Y.P., Moriyama, T., Okamoto, H., Mitsuyoshi, S. and Chung, U.I., 2021. Power laws derived from a Bayesian decision-making model in non-stationary environments. Symmetry, 13(4), p.718. https://doi.org/10.3390/sym13040718 .
  11. T. S. Kim, C. S. Park, and S. E. Ahn, “Determining the optimal maintenance action for a deteriorating repairable system,” Probabilistic Engineering Mechanics, vol. 23, no. 1, pp. 95–101, Jan. 2008, Doi: 10.1016/j.probengmech.2007.12.003
  12. Selevany, F.M. and Al-Talib, B.A., 2024. Robust Weighted Least Squares Method using different schemes of M-estimators (RWLSM), A comparative Study. IRAOI JOURNAL OF STATISTICAL SCIENCES, 20(1). https://doi.org/10.33899/iqjoss.2024.183230
  13. R. Calabria and G. Pulcini, “Bayes inference for the modulated power law process,” Commun Stat Theory Methods, vol. 26, no. 10, pp. 2421–2438, 1997, Doi: 10.1080/03610929708832057 .
  14. A. Sen, “Bayesian estimation and prediction of the intensity of the power law process,” J Stat Comput Simul, vol. 72, no. 8, pp. 613–631, 2002. https://doi.org/10.1080/00949650213742
  15. Pozza, F., Durante, D. and Szabo, B., 2024. Skew-symmetric approximations of posterior distributions. arXiv preprint arXiv:2409.14167. https://doi.org/10.48550/arXiv.2409.14167
  16. S. K. Bar-Lev, I. Lavl, and B. Reiser, “BAYESIAN INFERENCE FOR THE POWER LAW PROCESS,” 1992. https://doi.org/10.1007/BF00053394
  17. Z. F. Jaheen, “A Bayesian analysis of record statistics from the Gompertz model,” Appl Math Comput, vol. 145, no. 2–3, pp. 307–320, 2003. https://doi.org/10.1016/S0096-3003(02)00489-7
  18. U. Khair, H. Fahmi, S. al Hakim, and R. Rahim, “Forecasting error calculation with mean absolute deviation and mean absolute percentage error,” in Journal of Physics: Conference Series, 2017, vol. 930, no. 1, p. 012002. DOI 10.1088/1742-6596/930/1/012002
  19. Hussain, A.S., Sulaiman, M.S., Hussein, S.M., Az-Zo’bi, E.A. and Tashtoush, M., 2025. Advanced Parameter Estimation for the Gompertz-Makeham Process: A Comparative Study of MMLE, PSO, CS, and Bayesian Methods. Statistics, Optimization & Information Computing, 13(6), pp.2316-2338. https://doi.org/10.19139/soic-2310-5070-2167
  20. Hussain, A.S., Saadoon, N.Q., Abdulghafour, A.S. and Abduirazzaq, N.T., 2025, April. Parameters estimation of a suggested model non-homogeneous poisson process: A comparison of conventional and artificially intelligent approaches. In AIP Conference Proceedings (Vol. 3282, No. 1, p. 020023). AIP Publishing LLC. https://doi.org/10.1063/5.0264840
  21. Hussain, A.S., Jameel, A.F., Az-Zo’Bi, E.A. and Tashtoush, M.A., 2025. Enhanced Parameter Estimation for the Modified Gompertz-Makeham Model in Nonhomogeneous Poisson Processes Using Modified Likelihood and Swarm Intelligence Approaches. Babylonian Journal of Mathematics, 2025, pp.32-43. https://doi.org/10.58496/BJM/2025/005
  22. HUSSAIN, A.S., 2019. STABILITY OF RICCATI STOCHASTIC DIFFERENTIAL EQUATION. Journal of Duhok University, 22(1), pp.11-16. https://doi.org/10.26682/sjuod.2019.22.1.2
  23. Hussain, A., Oraibi, Y., Mashikhin, Z., Jameel, A., Tashtoush, M. and Az-Zo’Bi, E.A., 2025. New Software Reliability Growth Model: Piratical Swarm Optimization-Based Parameter Estimation in Environments with Uncertainty and Dependent Failures. Statistics, Optimization & Information Computing, 13(1), pp.209-221. https://doi.org/10.19139/soic-2310-5070-2109.
  24. Tashtoush, M.A., Ibrahim, I.A., Taha, W.M., Dawi, M.H., Jameel, A.F. and Az-Zo’bi, E.A., 2024. Various closed-form solitonic wave solutions of conformable higher-dimensional Fokas model in fluids and plasma physics. Iraqi Journal for Computer Science and Mathematics, 5(3), p.18.
  25. Az-Zo’bi, E.A., Afef, K., Ur Rahman, R., Akinyemi, L., Bekir, A., Ahmad, H., Tashtoush, M.A. and Mahariq, I., 2024. Novel topological, non-topological, and more solitons of the generalized cubic p-system describing isothermal flux. Optical and Quantum Electronics, 56(1), p.84
Download this PDF file

Statistics

How to Cite

Mahmood, K. B. . (2025). Bayesian Estimation of the Inverse Rayleigh Process under a Non-Homogeneous Poisson Process Framework. IRAQI JOURNAL OF STATISTICAL SCIENCES, 22(2), 163–175. https://doi.org/10.33899/iqjoss.v22i2.54201