Ranking of Intuitionistic Fuzzy Numbers by Using Scaling Method

Section: Article
Published
Nov 30, 2025
Pages
68-75

Abstract

Ranking intuitionistic fuzzy numbers (IFN) is a challenging task. Several methods have been presented for ranking IFNs. Also ranking for three IFN is rare.  In this work, a new multidimensional scaling (MDS) method for ranking triangular intuitionistic fuzzy number (TIFN) is proposed. This method is easy to implement, visualized and embedded the (TIFN). Also, gives a possibility to configure points in different ways.  Configuration points can be extracted in a two-dimensional space since each TIFN is represented as a row in a matrix. Since these points are not uniquely established, we provide a technique for reconfiguring it in order to compare it with various methods.  This method is novel in sense of the idea. Lastly, the method is illustrated through numerical examples.

References

  1. Arun Prakash, K., Suresh, M., & Vengataasalam, S. (2016). A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept. Mathematical Sciences, 10(4), 177–184. https://doi.org/10.1007/s40096-016-0192-y
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
  3. Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets (pp. 1–137). https://doi.org/10.1007/978-3-7908-1870-3_1
  4. Bharati, S. K. (2017). Ranking Method of Intuitionistic Fuzzy Numbers. In Global Journal of Pure and Applied Mathematics (Vol. 13, Issue 9). DOI:10.37622/000000
  5. Kareem, G. H., & Ramadan, A. M. (2021). Ranking of Fuzzy Numbers by using Scaling Method. Passer Journal of Basic and Applied Sciences, 3(2), 137–143. https://doi.org/10.24271/psr.24
  6. Mohan, S., Kannusamy, A. P., & Samiappan, V. (2020). A New Approach for Ranking of Intuitionistic Fuzzy Numbers. Journal of Fuzzy Extension and Applications, 1(1), 15–26. https://doi.org/10.22105/jfea.2020.247301.1003
  7. Nagoorgani, A. , and P. K. (2012). A new approach on solving intuitionistic fuzzy linear programming problem,. Applied Mathematical Sciences, 6(70), 3467–3474. doi:10.12988/ams
  8. Nehi, H. M. (2010). A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems, 12(1). https://doi.org/10.22105/jfea.2020.247301.1003
  9. Popa, L. (2023). A new ranking method for trapezoidal intuitionistic fuzzy numbers and its application to multi-criteria decision making. International Journal of Computers, Communications and Control, 18(2). https://doi.org/10.15837/ijccc.2023.2.5118
  10. Prakash, A., & Suresh, M. (2024). Ranking Triangular Intuitionistic Fuzzy Numbers: A Nagel Point Approach and Applications in Multi-Criteria Decision Making. https://doi.org/10.21203/rs.3.rs-3897760/v1
  11. Rencher, A. C. (2009). Multivariate statistical inference and applications,. Wiley Series in Probability and Statistics.
  12. Rezvani, S. (2013). Ranking method of trapezoidal intuitionistic fuzzy numbers. Annals of Fuzzy Mathematics and Informatics, 5(3), 515–523.
  13. Roseline, S. S., & Amirtharaj, E. C. H. (2011). A New Method for Ranking of Intuitionistic Fuzzy Numbers. Indian Journal of Applied Research, 3(6), 1–2. https://doi.org/10.15373/2249555X/JUNE2013/183
  14. Roseline, S. S., & Amirtharaj, E. C. H. (2013). A New Ranking of Intuitionistic Fuzzy Numbers with distance Method Based on the Circumcenter o Centroid. International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) , 2, 37–44. doi:10.1155/2011/178308
  15. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  16. Zadeh, L. A. (1971). Similarity relations and fuzzy orderings. Information Sciences, 3(2), 177–200. https://doi.org/10.1016/S0020-0255(71)80005-1
Download this PDF file

Statistics

How to Cite

Mahmood, Z. B. ., & Ramadan, A. M. . (2025). Ranking of Intuitionistic Fuzzy Numbers by Using Scaling Method. IRAQI JOURNAL OF STATISTICAL SCIENCES, 22(2), 68–75. https://doi.org/10.33899/iqjoss.v22i2.54078