Shrinkage Estimators in Bell Regression Model: Subject Review
Abstract
Bell regression model has become a very versatile model that replaced the conventional count data models and helps to resolve the problem of over-dispersion where the variance of data points surpasses the mean. Nevertheless, in practice, the classical maximum likelihood estimators (MLE) of the parameters of a model are frequently affected by multicollinearity among the explanatory variables, and they yield highly unstable estimates and inflated variances. To address these difficulties, estimation methods developed to estimate shrinkage, such as ridge or Liu estimators have been applied to the Bell regression model. In the subject review, new developments in estimators of shrinkage of Bell regression models are proportionate in discussing their theoretical background in knowledge, estimation process, and asymptotic characteristics. The results on Monte Carlo simulation studies always show that shrinkage estimators outweigh MLEs in that they minimize mean squared error and bias more than MLEs, especially in cases of multicollinearity. Both overall, estimation methods of shrinkage is a considerable improvement in Bell regression modeling that offers certainty and effectiveness of analysis of complicated counts information utilizing problematic distribution attributes.
References
- Abdul Kareem, Q., & Algamal, Z. (2020). Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm. Iraqi Journal of Statistical Sciences, 17(2), 26-35. DOI: 10.33899/iqjoss.2020.0167387
- Akram, M. N., Amin, M., & Amanullah, M. (2020). Two-parameter estimator for the inverse Gaussian regression model. Communications in Statistics - Simulation and Computation, 1-19. doi:10.1080/03610918.2020.1797797
- Alheety, M. I., & Golam Kibria, B. M. (2013). Modified Liu-Type Estimator Based on (r − k) Class Estimator. Communications in Statistics - Theory and Methods, 42(2), 304-319. doi:10.1080/03610926.2011.577552
- Amin, M., Akram, M. N., & Majid, A. (2021). On the estimation of Bell regression model using ridge estimator. Communications in Statistics - Simulation and Computation, 1-14. doi:10.1080/03610918.2020.1870694
- Asar, Y., & Genç, A. (2017). A New Two-Parameter Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science. doi:10.1007/s40995-017-0174-4
- Bell, E. T. (1934). Exponential numbers. The American Mathematical Monthly, 41(7), 411-419. doi:10.1080/03610926.2011.577552.
- Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35(2), 258-277. doi:10.1080/03610918.2020.1797797
- Castellares, F., Ferrari, S. L. P., & Lemonte, A. J. (2018). On the Bell distribution and its associated regression model for count data. Applied Mathematical Modelling, 56, 172-185. doi:10.1016/j.apm.2017.12.014
- Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. doi: 10.1080/00401706.1970.10488634
- Huang, J., & Yang, H. (2014). A two-parameter estimator in the negative binomial regression model. Journal of Statistical Computation and Simulation, 84(1), 124-134. Doi: 10.1080/00949655.2012.696648
- Kibria, B. M. G. (2003). Performance of some new ridge regression estimators. Communications in Statistics - Simulation and Computation, 32(2), 419-435. doi:10.1081/SAC-120017499
- Kibria, B. M. G., Månsson, K., & Shukur, G. (2015). A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression. Communications in Statistics - Simulation and Computation, 44(4), 943-957. doi:10.1080/03610918.2013.796981
- Kibria, B. M. G., & Saleh, A. K. M. E. (2004). Preliminary test ridge regression estimators with student?s t errors and conflicting test-statistics. Metrika, 59(2), 105-124. doi:10.1007/s001840300273
- Kibria, G., Månsson, K., & Shukur, G. (2012). Performance of some logistic ridge regression estimators. Computational Economics, 40(4), 401–414. Doi: 10.1007/s10614-011-9275-x
- Kurtoğlu, F., & Özkale, M. R. (2016). Liu estimation in generalized linear models: application on gamma distributed response variable. Statistical Papers, 57(4), 911-928. doi:10.1007/s00362-016-0814-3
- Liu, G., & Piantadosi, S. (2016). Ridge estimation in generalized linear models and proportional hazards regressions. Communications in Statistics - Theory and Methods, 46(23), 11466-11479. doi:10.1080/03610926.2016.1267767
- Liu, K. (1993). A new class of biased estimate in linear regression. Communication in Statistics -Theory and Methods, 22, 393–402. Doi: 10.1080/03610929308831027
- Liu, K. (2003). Using Liu-type estimator to combat collinearity. Communications in Statistics-Theory and Methods, 32(5), 1009-1020. Doi: 10.1081/STA-120019959
- Mackinnon, M. J., & Puterman, M. L. (1989). Collinearity in generalized linear models. Communications in Statistics - Theory and Methods, 18(9), 3463-3472. doi:10.1080/03610928908830102
- Majid, A., Amin, M., & Akram, M. N. (2021). On the Liu estimation of Bell regression model in the presence of multicollinearity. Journal of Statistical Computation and Simulation, 1-21. doi:10.1080/00949655.2021.1955886
- Månsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475-1481. doi:10.1016/j.econmod.2011.02.030
- Norouzirad, M., & Arashi, M. (2017). Preliminary test and Stein-type shrinkage ridge estimators in robust regression. Statistical Papers. doi:10.1007/s00362-017-0899-3
- Nyquist, H. (1991). Restricted estimation of generalized linear models. Journal of the Royal Statistical Society. Series C (Applied Statistics), 40(1), 133-141. doi:10.2307/2347912
- Othman, F. A. Y. R. A. (2022). Shrinkage Estimators In Inverse Gaussian Regression Model: Subject. Iraqi Journal of Statistical Sciences, 19(1), 46-53. DOI: 10.33899/iqjoss.2022.0174331
- Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics - Theory and Methods, 21(8), 2227-2246. doi:10.1080/03610929208830909
- Shamany, R., Alobaidi, N. N., & Algamal, Z. Y. (2019). A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics. Electronic Journal of Applied Statistical Analysis, 12(2), 453-464. Doi: 10.1285/i20705948v12n2p453
- Wu, J. (2014). Modified Restricted Almost Unbiased Liu Estimator in Linear Regression Model. Communications in Statistics - Simulation and Computation, 45(2), 689-700. doi:10.1080/03610918.2013.870198
- Wu, J. (2016). Preliminary test Liu-type estimators based on W, LR, and LM test statistics in a regression model. Communications in Statistics - Simulation and Computation, 46(9), 6760-6771. doi:10.1080/03610918.2016.1210170
- Abdul Kareem, Q., & Algamal, Z. (2020). Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm. Iraqi Journal of Statistical Sciences, 17(2), 26-35.





