Shrinkage Estimators in Bell Regression Model: Subject Review

Section: Review Articles
Published
Nov 30, 2025
Pages
102-107

Abstract

Bell regression model has become a very versatile model that replaced the conventional count data models and helps to resolve the problem of over-dispersion where the variance of data points surpasses the mean. Nevertheless, in practice, the classical maximum likelihood estimators (MLE) of the parameters of a model are frequently affected by multicollinearity among the explanatory variables, and they yield highly unstable estimates and inflated variances. To address these difficulties, estimation methods developed to estimate shrinkage, such as ridge or Liu estimators have been applied to the Bell regression model. In the subject review, new developments in estimators of shrinkage of Bell regression models are proportionate in discussing their theoretical background in knowledge, estimation process, and asymptotic characteristics. The results on Monte Carlo simulation studies always show that shrinkage estimators outweigh MLEs in that they minimize mean squared error and bias more than MLEs, especially in cases of multicollinearity. Both overall, estimation methods of shrinkage is a considerable improvement in Bell regression modeling that offers certainty and effectiveness of analysis of complicated counts information utilizing problematic distribution attributes.

References

  1. Abdul Kareem, Q., & Algamal, Z. (2020). Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm. Iraqi Journal of Statistical Sciences, 17(2), 26-35. DOI: 10.33899/iqjoss.2020.0167387
  2. Akram, M. N., Amin, M., & Amanullah, M. (2020). Two-parameter estimator for the inverse Gaussian regression model. Communications in Statistics - Simulation and Computation, 1-19. doi:10.1080/03610918.2020.1797797
  3. Alheety, M. I., & Golam Kibria, B. M. (2013). Modified Liu-Type Estimator Based on (r − k) Class Estimator. Communications in Statistics - Theory and Methods, 42(2), 304-319. doi:10.1080/03610926.2011.577552
  4. Amin, M., Akram, M. N., & Majid, A. (2021). On the estimation of Bell regression model using ridge estimator. Communications in Statistics - Simulation and Computation, 1-14. doi:10.1080/03610918.2020.1870694
  5. Asar, Y., & Genç, A. (2017). A New Two-Parameter Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science. doi:10.1007/s40995-017-0174-4
  6. Bell, E. T. (1934). Exponential numbers. The American Mathematical Monthly, 41(7), 411-419. doi:10.1080/03610926.2011.577552.
  7. Bell, E. T. (1934). Exponential polynomials. Annals of Mathematics, 35(2), 258-277. doi:10.1080/03610918.2020.1797797
  8. Castellares, F., Ferrari, S. L. P., & Lemonte, A. J. (2018). On the Bell distribution and its associated regression model for count data. Applied Mathematical Modelling, 56, 172-185. doi:10.1016/j.apm.2017.12.014
  9. Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. doi: 10.1080/00401706.1970.10488634
  10. Huang, J., & Yang, H. (2014). A two-parameter estimator in the negative binomial regression model. Journal of Statistical Computation and Simulation, 84(1), 124-134. Doi: 10.1080/00949655.2012.696648
  11. Kibria, B. M. G. (2003). Performance of some new ridge regression estimators. Communications in Statistics - Simulation and Computation, 32(2), 419-435. doi:10.1081/SAC-120017499
  12. Kibria, B. M. G., Månsson, K., & Shukur, G. (2015). A Simulation Study of Some Biasing Parameters for the Ridge Type Estimation of Poisson Regression. Communications in Statistics - Simulation and Computation, 44(4), 943-957. doi:10.1080/03610918.2013.796981
  13. Kibria, B. M. G., & Saleh, A. K. M. E. (2004). Preliminary test ridge regression estimators with student?s t errors and conflicting test-statistics. Metrika, 59(2), 105-124. doi:10.1007/s001840300273
  14. Kibria, G., Månsson, K., & Shukur, G. (2012). Performance of some logistic ridge regression estimators. Computational Economics, 40(4), 401–414. Doi: 10.1007/s10614-011-9275-x
  15. Kurtoğlu, F., & Özkale, M. R. (2016). Liu estimation in generalized linear models: application on gamma distributed response variable. Statistical Papers, 57(4), 911-928. doi:10.1007/s00362-016-0814-3
  16. Liu, G., & Piantadosi, S. (2016). Ridge estimation in generalized linear models and proportional hazards regressions. Communications in Statistics - Theory and Methods, 46(23), 11466-11479. doi:10.1080/03610926.2016.1267767
  17. Liu, K. (1993). A new class of biased estimate in linear regression. Communication in Statistics -Theory and Methods, 22, 393–402. Doi: 10.1080/03610929308831027
  18. Liu, K. (2003). Using Liu-type estimator to combat collinearity. Communications in Statistics-Theory and Methods, 32(5), 1009-1020. Doi: 10.1081/STA-120019959
  19. Mackinnon, M. J., & Puterman, M. L. (1989). Collinearity in generalized linear models. Communications in Statistics - Theory and Methods, 18(9), 3463-3472. doi:10.1080/03610928908830102
  20. Majid, A., Amin, M., & Akram, M. N. (2021). On the Liu estimation of Bell regression model in the presence of multicollinearity. Journal of Statistical Computation and Simulation, 1-21. doi:10.1080/00949655.2021.1955886
  21. Månsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475-1481. doi:10.1016/j.econmod.2011.02.030
  22. Norouzirad, M., & Arashi, M. (2017). Preliminary test and Stein-type shrinkage ridge estimators in robust regression. Statistical Papers. doi:10.1007/s00362-017-0899-3
  23. Nyquist, H. (1991). Restricted estimation of generalized linear models. Journal of the Royal Statistical Society. Series C (Applied Statistics), 40(1), 133-141. doi:10.2307/2347912
  24. Othman, F. A. Y. R. A. (2022). Shrinkage Estimators In Inverse Gaussian Regression Model: Subject. Iraqi Journal of Statistical Sciences, 19(1), 46-53. DOI: 10.33899/iqjoss.2022.0174331
  25. Segerstedt, B. (1992). On ordinary ridge regression in generalized linear models. Communications in Statistics - Theory and Methods, 21(8), 2227-2246. doi:10.1080/03610929208830909
  26. Shamany, R., Alobaidi, N. N., & Algamal, Z. Y. (2019). A new two-parameter estimator for the inverse Gaussian regression model with application in chemometrics. Electronic Journal of Applied Statistical Analysis, 12(2), 453-464. Doi: 10.1285/i20705948v12n2p453
  27. Wu, J. (2014). Modified Restricted Almost Unbiased Liu Estimator in Linear Regression Model. Communications in Statistics - Simulation and Computation, 45(2), 689-700. doi:10.1080/03610918.2013.870198
  28. Wu, J. (2016). Preliminary test Liu-type estimators based on W, LR, and LM test statistics in a regression model. Communications in Statistics - Simulation and Computation, 46(9), 6760-6771. doi:10.1080/03610918.2016.1210170
  29. Abdul Kareem, Q., & Algamal, Z. (2020). Generalized ridge estimator shrinkage estimation based on particle swarm optimization algorithm. Iraqi Journal of Statistical Sciences, 17(2), 26-35.
Download this PDF file

Statistics

How to Cite

Taha, H. H. . (2025). Shrinkage Estimators in Bell Regression Model: Subject Review. IRAQI JOURNAL OF STATISTICAL SCIENCES, 22(2), 102–107. https://doi.org/10.33899/iqjoss.v22i2.54082