Comparison of Wavelet Shrinkage and Hampel Filter in the Analysis of Multivariate Linear Regression Models

Section: Article
Published
Nov 30, 2025
Pages
1-16

Abstract

The presence of outliers in the data of a multivariate regression model affects the accuracy of the estimated model parameters and leads to unacceptably large residual values. Therefore, some filters, including the Hempel filter, are usually used to handle outliers (or use some robust method). This paper proposes to employ wavelet shrinkage to address the problem of outliers in multivariate regression model data by using wavelets (Coiflets, Daubechies, and Demy) with a universal threshold method and soft rule. To illustrate the efficiency of the proposed method (Wavelet Shrinkage filter) was compared with the traditional method (Hampel filter) based on the mean square error criterion through simulation and real data. A program has been designed in MATLAB to do this. The results proved that the Wavelet shrinkage filter method was more efficient than the traditional method in dealing with the outlier problem and obtaining more accurate multivariate model parameters than the Hampel filter method.

References

  1. Aggarwal, C. C. (2017). Outlier Analysis (2nd ed.). Springer. https://link.springer.com/book/10.1007/978-3-319-47578-3
  2. Arts, L. P. A. & van den Broek, E. L. (2022). The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time-frequency analysis. Nature Computational Science. https://www.nature.com/articles/s43588-021-00183-z
  3. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3rd ed.). New York: Wiley. https://www.amazon.com/Outliers-Statistical-Data-V-Barnett/dp/0471930946
  4. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 93-104). LOF: identifying density-based local outliers
  5. Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15-18.. https://doi.org/10.1080/00401706.1977.10489493
  6. Donoho, D. L., & Johnstone, I. M. (1994). Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 81(3), 425-455. https://doi.org/10.1093/biomet/81.3.425
  7. Greene, W. H. (2018). Econometric Analysis (8th ed.). Pearson. Econometric Analysis - VitalSource
  8. Guo, T., Zhang, T., Lim, E., Lopez-Benitez, M., Ma, F., & Yu, L. (2022). A review of wavelet analysis and its applications: Challenges and opportunities. IEEe Access, 10, 58869-58903. https://ieeexplore.ieee.org/abstract/document/9785993/
  9. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: Global edition. Multivariate Data Analysis(Internet Archive)
  10. Hampel, F. R. (1974). The Influence Curve and its Role in Robust Estimation. Journal of the American Statistical Association, 69(346), 383-393. https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
  11. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. New York: Wiley. http://dx.doi.org/10.1002/9781118186435
  12. Huber, P. J., & Ronchetti, E. M. (1981). Robust statistics john wiley & sons. New York, 1(1). https://onlinelibrary.wiley.com/doi/book/10.1002/0471725250
  13. Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied Linear Regression Models. McGraw-Hill. https://thuvienso.hoasen.edu.vn/handle/123456789/9564
  14. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2015). Feature Selection: A Data Perspective. ACM Computing Surveys, 50(6), Article 94. https://doi.org/10.1145/3136625
  15. Li, J., Liu, M., Li, X., & Wang, S. (2022). A Comprehensive Review on Outlier Detection with Data Imputation Techniques. Information Sciences, 610, 222-245. https://doi.org/10.1145/3645108
  16. Mallat, S. (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693. https://ieeexplore.ieee.org/abstract/document/192463/
  17. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis 5th ed. Introduction to Linear Regression Analysis
  18. Mustafa, Q., & Ali, T. H. (2013). COMPARING THE BOX-JENKINS MODELS BEFORE AND AFTER THE WAVELET FILTERING IN TERMS OF REDUCING THE ORDERS WITH APPLICATION. Journal of Concrete & Applicable Mathematics, 11(2). (DPU Online)(University of Zakho)
  19. Najafi, M., & Hakim, A. (1992). Robust Estimation and Outlier Detection in Multivariate Data. Communications in Statistics - Theory and Methods, 21(5), 1495-1509.
  20. Nielsen, M. (2001). On the construction and frequency localization of finite orthogonal quadrature filters. Journal of Approximation Theory, 108(1), 36-52. https://doi.org/10.1006/jath.2000.3514
  21. Omar, C., & Ali, T. H., Hassn, K. (2020). Using Bayes weights to remedy the heterogeneity problem of random error variance in linear models. Iraqi Journal of Statistical Sciences, 17(2), 58-67. DOI: 10.33899/iqjoss.2020.167391
  22. Omer, A. W., Sedeeq, B. S., & Ali, T. H. (2024). A proposed hybrid method for Multivariate Linear Regression Model and Multivariate Wavelets (Simulation study). Polytechnic Journal of Humanities and Social Sciences, 5(1), 112-124. https://journals.epu.edu.iq/index.php/ptjhss/article/view/1452
  23. Pearson, R. K. (2002). Outliers in Process Modeling and Identification. IEEE Transactions on Control Systems Technology, 10(1), 55-63. https://doi.org/10.1109/87.974338
  24. Rencher, A.C. and Christensen, W.F. (2012). Wiley Series in Probability and Statistics. In Methods of Multivariate Analysis (eds A.C. Rencher and W.F. Christensen). https://doi.org/10.1002/9781118391686.scard
  25. Rousseeuw, P. J., & Leroy, A. M. (2003). Robust Regression and Outlier Detection. Wiley. Robust regression and outlier detection
  26. Strang, G., & Nguyen, T. (1996). Wavelets and Filter Banks. Wellesley-Cambridge Press. https://books.google.iq/books?id=Z76N_Ab5pp8C&source=gbs_navlinks_s
  27. Tabachnick, B. G., & Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Pearson. Pearson Higher Ed (PearsonHigherEd)
  28. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  29. Tukey, J. W. (1977). Exploratory data analysis. Reading/Addison-Wesley. https://link.springer.com/content/ pdf/10.1007/978-3-031-20719-8_2?pdf=chapter%20toc
  30. Unser, M. (2002). Sampling—50 Years After Shannon. Proceedings of the IEEE, 90(5), 742-765. https://doi.org/10.1109/TAC.2002.1000281
Download this PDF file

Statistics

How to Cite

Omer, A. W. ., & Ali, T. H. . (2025). Comparison of Wavelet Shrinkage and Hampel Filter in the Analysis of Multivariate Linear Regression Models. IRAQI JOURNAL OF STATISTICAL SCIENCES, 22(2), 1–16. https://doi.org/10.33899/iqjoss.v22i2.54068