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1. Introduction

An analysis of repairable systems requires the use of counting processes to track system failures through individual
events. The analysis of repairable system reliability requires an investigation of multiple repair interventions throughout
its operational lifespan. When failure data shows no discernible pattern the renewal process serves as an adequate
simulation model because system repairs bring the system back to pristine condition [1],[2]. The decision to use the
Inverse Rayleigh Process (IRP) as the model framework is guided by the flexibility of this type of process that
successfully models the behavior of systems which have the tendency or the character of early-life failures or reliability
growth profiles. The IRP is analytically tractable (i.e. does not require numerical methods) and is a member of the
exponential family; unlike the traditional functions, such as exponential and Weibull, it is unimodal in probability density
function, and is therefore particularly appropriate to modeling repairable systems in non-homogeneous conditions. It
takes into account naturally the reduction in the failure rates over time that is characteristic of the reliability data of
systems subject to either corrective or preventive maintenance because the intensity function naturally admits such a
dependency. The above features make the IRP an attractive prospect to alternative models based on renewal or NHPP,
especially those interested in improved prediction and more stable estimates in practice. The research aims to determine
the Inverse Gompertz process parameter estimates which handle time-dependent failure rate changes correctly. The
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assessment involves two parameter estimation approaches which include Maximum Likelihood Estimation (MLE) and
Bayesian inference (Bayes method). Both approaches deliver inference methods that operate through frequentist statistics
and probabilistic theories to determine process parameters. Reliability growth testing requires assessments to identify if
systems exhibit meaningful changes either positive or negative throughout the real-time duration. Interfresh periods that
rise during the testing phase point to better system reliability between failures. System reliability tends to deteriorate
when the intervals between system failures become shorter. The Non-Homogeneous Poisson Process (NHPP) stands out
for modeling dynamic failure patterns because its intensity function allows modeling changes in failure rates throughout
time. The failure intensity rate decreases throughout time but it increases as failures occur more frequently. Renewal
processes feature inter-failure times that both have the same distribution type and independence of each other element.
A renewal process becomes a Homogeneous Poisson Process when each inter-arrival time follows an exponential
distribution pattern according to [3],[4]. The authors advance reliability research through thorough assessment of MLE
and Bayesian estimators for Inverse Gompertz processes that support trend-based maintenance plans and failure
predictions.

A number of researches have considered different estimation methodologies associated with problems of fuzzy reliability
analysis and its statistical counterparts. a statistical model based on frailty of repairable systems with dependent failure
times was developed looking at perfect repairs. They calculated parameter estimation procedures, carried out simulation
experiments and compared their model with practical data of sugarcane harvesters and dump trucks. They aimed to get
to know more and measure the unobserved heterogeneity and dependence of system failures better to enhance the analysis
of reliability and that of maintenance strategies. They also commented on future research options, which include enlarging
the model to incomplete fixes and Bayesian methods [5]. Presents a Bayesian framework for change-point detection in
non-homogeneous Poisson processes (NHPP) with a Weibull (power-law) intensity function, applying MCMC and model
selection via Bayes factor and DIC closely aligning [6]. Developed and validated a hybrid survival model using Burr
Type XII distribution combined with MLE and SVM methods to predict breast and brain cancer survival times [7]. In
addition, the Non-Homogeneous Poisson Process (NHPP) has been used in telecommunications so as to model the arrival
rates of calls and messages. In a novel contribution, researchers suggested an NHPP model, where the survival rate of the
patients is following an inverse Gompertz distribution under fuzzy data conditions. Both the classical and smart (Al-
based) methodologies of estimating were used to carry out the estimations of the model parameters. The results of these
methods were compared in the fuzzy as well as the real data settings — the aim was to determine the method with the most
adequate estimation method [8-12]. Having put the model of repairable systems situated in the context of motivation and
theoretical basis, i.e., using non-homogeneous models of stochastic frameworks, notably the Inverse Rayleigh Process
(IRP), the next point is to formally elaborate on the proposed model building. These consist of the probabilistic
framework, intensity functions and related mean value functions, which characterize the IRP within NHPP context. In
laying down these mathematical foundations, a rigorous evaluation of the estimation techniques of parameters will be
provided which is fundamental to the practical application and capacity to predict of the suggested model.

1.1. Inverse Rayleigh Process (Proposed Model)

Flexible and analytically treatable is Inverse Rayleigh (IR) distribution that has attracted much attention in studies about
life-testing and reliability analysis. Its suitability is especially evident in describing the time-dependent rate of events
subject to the nonhomogeneous Poisson processes and thus, as a result, giving rise to the Inverse Rayleigh process. With
a unimodal pdf and belonging to the exponential family, the IR distribution has excellent modeling and forecasting
potential for complex system failures rates. Based on its mathematical properties and interpretability, it is a useful tool
for informed decision making in such industries as manufacturing, engineering, and healthcare [13].

f(t) = A(t)e ™o, 0<t < oo €))
Where f(t) is the probability density function of the time until the first failure/event occurs, evaluated at time ¢, A(t) is
the intensity function of the NHPP at time t, indicating the instantaneous rate at which events (e.g., failures) are expected
to occur. And m(t) is the mean value function (MVF) evaluated at time t,, representing the expected cumulative number
of events from time 0 up to time ¢,.

Proposed the time rate of occurrence, denoted as A(t), in the new process is defined by the equation [14],[15]:

202
A== 0<t< o, a>0, (2

t3
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Where t represents time, and the parameters « is positive constants. The mean value function is expressed as follows:

m(t) = f;x(u) du ,0<t< 3)
t2a?
= fOF du
=—a?t2.0<t <t (4)

We will substitute equations (2) and (4) into equation (1), The Inverse Rayleigh process is obtained through the pdf,
denoted by [16],[17]:

f(o) = %2 e~ >0, (5)
In this equation, a controls the shape of the inverse Rayleigh intensity, acting as a scale parameter. It is important to
correctly estimate a, since it shapes how well the model works and how it describes the data. Proper calculation of this
parameter helps the Inverse Rayleigh Process perform more successfully in studying reliability. Having determined the
IRP model structure, one is now interested in the statistical estimation of the parameters of the model. This is a decisive
measure, which helps to determine the applicability of this model because parameters estimation determines the
accuracy of system failures predictions. Two chief estimation paradigm regimes are viewed: the old fashioned
Maximum Likelihood Estimation (MLE) and the Bayesian framework of inference.

2. Method of Estimation

There are several methodological techniques that can be used in estimating the parameters of Inverse Rayleigh process.
In the research reported, a comparative study was carried out in which both the techniques of Maximum Likelihood
Estimation (MLE) as well as Bayesian estimation techniques were used to assess their performance and inferential
properties.

2.1. Maximum likelihood Method (MLE)

Maximum Likelihood Estimation (MLE) is a fundamental technique and a widely used parameter estimator in stochastic
models’ formulations. Its prevalent use is mainly owed to desirable statistical property, namely, its consistency,
asymptotic unbiasedness and efficiency under regularity conditions. In this sense, the main goal of MLE is to find that
set of the parameter values that maximizes the likelihood function on the basis of the observed data, so that the estimates
obtained are as good as possible in terms of explaining the probabilistic mechanism underlying the data. In the event of
a Non-Homogeneous Poisson Process (NHPP) in which the intensity function for the time-dependent rate of occurrence
is given by Equation (5), the joint probability density function for observed event times is (¢, ty, ..., t,) is formally
expressed by the following equation [18],[19]:

f (b1, b,y ) =TTy M) ©)
From the (9) equation, we substitute it into the (6) to get the joint probability function:

o _2p
ftota nty) = in=12t?e 20,2 ’

The Likelihood function for the formula (7) for the period (0, t].

202 _2¢=2
L= in=1t_36 "ty (8)
i

The log-likelihood function is expressed as follows:

InL = nln(2a?) — 33X, In(t;) — n o? t5? 9)
Hence, deriving equation (9) with respect to parameter a, we get:
dlnL n —

™ =ﬁ-40(—2no(t02 (10)

And formula (10) is equating to zero, the likelihood will be:
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- 4a—2natg?=0 (11)
20

Therefore, the maximum likelihood estimator for the parameter a is:

AmLe = \/g (12)

Where t, represent the time, the last event occurred.

2.2. Bayes Estimation (Bay)

Bayesian estimation is commonly known as one of the most successful methodologies of inferring the parameters of
stochastic processes because of its natural capability of providing reliable posterior inferences incorporating prior
knowledge. This technique presupposes a fundamental precondition of the prior distribution of parameters according to
which the existing beliefs or empirical knowledge are contained before the observation of the current data. It then
combines this prior with the likelihood function, i.e., one derived from the sample data being observed, and expressed
through maximum likelihood estimation; to arrive at the posterior distribution, which is a representation of the updated
views of the parameters, in light of the data provided. In view of the likelihood function that is given in Equation (9), we
assume that prior distributions for all parameters follow Gamma distribution, which is corroborated by the existing studies
[20],[21].

a~Gammal(a, b). The p.d. f for each parameter are:

p(a) = %a“‘le"’“ (13)

and the joint prior distribution function for («) is [13][14]:

be -1 -
p(a) =Ta)a“ lg=ba (14)

then the posterior distribution function is:
p(B,A|Data) = p(B, )L(B, 1)

be 1202
— a-1,-ba -a?ty?
ra)

a®le —e
e

N0

a+2n-1 e —(ba+natg)

a

aa+2n—1e—(ba+nat0)

(15)

= faa+2n—1e—(ba+nato)da
The Bayes estimator for IRP parameters can be obtained as follows:

B -
fﬂa+"/1c+"_1e_(bﬁ+dl)_}‘t0 ml:ltiﬁ tag

Apqy = Ela|Data] = [ p(a|Data)da = (16)

f qat+2n-1p-(ba+naty) q4q

Because of the analytical intractability of the integrals in Equation (16), Laplace approximation was used as a pragmatic
and easy approach to approximating the posterior expectations. This approach is especially helpful if closed-form
solutions lack and also it allows achieving a good approximation in Bayesian inference in the case where conditions are
regular [15][16][17],[22],[23]. Consider the following general formulation:
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[ enlu@l+t+p) gy

I(Data) = E[u(a|Data)] = [ Pag @an

In this case, the function u(a) stands for a function of a. for the case of the Equation (16), it is particularly regarded as
the a itself. This function is the natural logarithm of the prior probability distribution of the parameter, and it is given
formally as below:

ba

p=In [r(a)] + (a — Din(a) — (ba) (18)

£ is the natural logarithm of the likelihood function, defined as follows:

£ =nin(a) —t& + (a —1) T, In(t) (19)
Let:

h(a) =~ (£ +p) (20)

h(@) = = n(u(@)) + h(a) (21)

Then the equation (17) becomes:

nh*(a)
I(Data) = E[u(a|Data)] = W (22)
Thus, Laplace's estimate for this equation is as follows:
I(Data) = E[u(a|Data)]
121 /2
= [m] exp{n(h* (a*) — h(a))} (23)

The values that maximize the function h*(a*), and (a) are the values that maximize the function h(a), Z* and X are the
negative inverse of the Hessian Matrix for h* (a*) and h(a) at (a*), and (@) respectively:

3%h
2 = _ﬁ (24)
«_ 0%
= e (25)
Note that h is a constant, while h* change with u, whereas:
h'g(a*) = %ln(a) + h(a) (26)

Hence, the Bayes estimators for the parameters of the Inverse Rayleigh Process (IRP) found with the use of Laplace
approximation approach are as follows:

Gssc = [2]* expfn(h u(a) - h(@)) (27)
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In order to compare and point out the most effective estimation method the criterion of Root Mean Square Error (RMSE)
was used and calculated as follows [18]:

T (m(D,-m(0)?

RMSE =
Q

(28)

where m(t): represents the real value, m.(t): represents the estimated value. Since the MLE and Bayesian methods have
been introduced to estimate IRP parameters, it is quite important to evaluate the empirical performance of the developed
methods. The next part shows the simulation study aimed at comparing the estimators under different sample sizes and
parameter conditions. This is essential towards a confirmation of the soundness and comparative accuracy of the methods
of estimation.

3. Simulation
Simulation has a central role in system and process study and analysis. in which real or imaginary operations are defined
mathematically or computationally. Being a highly flexible instrument of analysis, simulation allows researchers to study
the impact of the different system parameters and to explore hypothesis-driven simulations without the limitations of
physical experimentation. In numerous of the day-to-day applications, empirical testing may be prohibitively costly, in
desirable or time-consuming; in such a case simulation would become an essential alternative. Through purposeful changes
of input parameters and performing a series of controlled virtual experiments, simulation enables a deeper understanding
of system dynamics and validation of theoretical models in support of better decision making in science and practice in
various disciplines engineering, economics and software systems [17].
Stage I: Model Initialization and Parameter Specification
The first step plays a pivotal role by creating a base for all following simulation processes. The first step includes all
operations that establish core hypothesis along with parameter value selection while defining process behavior. This
phase contains three sequential elements for completion:
Step 1: Default Parameter Values get selected during this first step of the procedure
The simulation process starts by setting initial default values to the parameters used in Inverse Rayleigh Process. The
chosen parameter settings draw from past experimental studies together with comprehensive testing work to maintain
robustness and applicability of configured parameters. Two specified parameter configurations showed the best results
from evaluating different simulation parameter options.

e Setl:a=06;a=16

These parameters respectively define the shape, scale, location, and additional distributional characteristics necessary for
generating synthetic data that closely resemble the theoretical behavior of the Inverse Rayleigh Distribution. As shown
in the table 1.
Step 2: Determination of Sample Sizes
Different sample sizes of small medium and large datasets successfully measure the stability and performance of the
estimators during the simulation.

e n =25;50;100.

This stratification allows for rigorous analysis of estimator sensitivity and efficiency under varying data volumes.
Stage Il: Random Data Generation via Inverse Transformation
This stage involves the generation of pseudo-random data points that follow the probability distribution function of the
Inverse Rayleigh Process, utilizing the Inverse Transform Sampling Method.
Step 1. Generation of Uniform Random Variables
Let u; ~U(0,1),i =0,1,2,...,n. (29)
MATLAB provides the built-in rand function to produce independent identical distributed (i.i.d.) random variables
distributed uniformly from the interval (0,1) during this stage. The formal expression is:
Where:

e u;: Continuous uniform random variable.

e n: Sample size.

168



Iragi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (/63-175)

Step 2: Transformation to Inverse Rayleigh Distribution Data

The generated uniform variables are transformed into data that follow the Inverse Rayleigh Process via the Inverse
Cumulative Distribution Function (CDF). This transformation leverages the known CDF of the Inverse Rayleigh
Distribution, denoted as Eq. (1) in the study, and applies the inverse mapping: x; = F~1(y), This simplifies to:

t; = /_Lazl =0,12,..,n. (30)

This procedure ensures that the synthetic dataset accurately represents the statistical characteristics of the Inverse
Rayleigh Process under study.
Stage I11: Parameter Estimation
The simulation framework advances to its last stage through parameter estimation of Inverse Rayleigh distribution as
applied to Software Reliability Growth Models (SRGMs). The third phase includes multiple technical approaches for
parameter estimation across the complete observation period to guarantee predictive reliability and statistical precision.
These estimation methodologies are used for the process:

e  Maximum Likelihood Estimations.

e  Bayes estimator.

Stage IV: The optimal estimation method was identified based on the comparison metric Root Mean Squared Error
(RMSE), evaluated across the estimation of the probability density function.

Stage V: experiment is repeated (1000) times.

Stage VI: Compute the Root Mean Square Error (RMSE) for each observation t;, based on the estimated distribution
parameters ¢ and k.

Q (—__ 2
RMS(@) = F“WT“) (31)

Stage VII: Schwarz Information Criterion (SIC/BIC): to compare models:

Compared to the Root Mean Square Error (RMSE), this paper adds the Schwarz Information Criterion (SIC), as also
known as the Bayesian Information Criterion (BIC), to gauge model performance through penalization of model
complexity. The BIC of this is calculated as [25]:

BIC = —21logL(8) + klog(n), (32)
Where L(8) represents the maximum likelihood of the model and k is the number of free parameters, n is the sample
size. The criteria is a tradeoff between model fit and parsimony. In the case of both the Maximum Likelihood Estimation
(MLE) as well as the Bayesian estimators, there was the computation of BIC based on both simulated as well as real data.
The model with the least BIC is taken as the most desirable and provides the best trade-off between the explanatory power
and complexity.

Table 1. Specification of default values of a parameter for the prior distribution in Bayesian estimate.

Case a
| 0.6
I 1.6
11 0.6
v 1.6

Table 2. The simulated RMSE for the MLE and Bayes estimator for IRP.
n parameter MLE Bay I Bay I Bay I Bay IV

a=20.6 29.397 28.731 27.569* 27.674 28.879
a=16 29.298 21.888 21.563* 27.356 24.161
a=0.6 18.914 18.687 18.321* 18.361 18.757
a=16 18.385 15.594 15.041* 17.097 16.676
100 a=0.6 13.061 12.989 12.853* 12.875 13.005

25

50
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a=16 ‘ 10.844 ‘ 10.097 ‘ 10.093* ‘ 11.006 10.319
Table 3. The simulated BIC for the MLE and Bayes estimator for IRP.

n parameter MLE Bay 1 Bay I Bay Il Bay IV

a=0.6 19.287 27.631 16.469* 26.774 26.679

? a=16 19.198 20.788 11.363* 26.456 22.061
a=0.6 28.814 17.587 17.211% 19.461 16.557

% a=1.6 28.495 14.494 14.031%* 18.197 14.476
a=0.6 23.051 11.889 11.753* 13.975 11.905

100 a=1.6 20.734 9.097 9.083* 12.106 12.119

The numerical results shown in Tables 2 and 3 are indicative of the estimates of the model parameters of the Inverse
Rayleigh Process (IRP) that was estimated using the Maximum Likelihood Estimation (MLE) and other Bayesian
estimation techniques. A comparison of the models using the Root Mean Square Error (RMSE) and Schwarz Information
Criterion (SIC), values shows that the Bayes Il is performing better than other Bayesian techniques and MLE method for
better estimation accuracy under the stated evaluation criteria. Although simulations give a hint at how things are to be
done under controlled conditions, real time validation is essential. In this way, the next section is devoted to the application
of suggested estimation approaches to the real failures data of the Mosul Gas Power Plant. This application does not only
prove the practicality of the model but also proves its applicability in supporting operational conditions.

4. Simulation

In order to determine the real-world applicability of the proposed estimation methods, lowa State University’s failure
data collected from Mosul Gas Power Plant, placed in Nineveh Governorate of Iraq were used. The dataset consists of
observed lags (days) between the consecutive failures observed during the period May 1%, 2019 — June 30™, 2021.

4.1. Homogeneity Testing for the Inverse Rayleigh Process

The IRP is considered as nonhomogeneous because its time rate of events is dependent on the change in time (t), which
means that its behavior is affected by time t. Therefore, the Inverse Rayleigh process is homogeneous when 4 = 0, and
it is nonhomogeneous when 2 # 0. To test whether the process is homogeneous or nonhomogeneous, the following
hypothesis is considered [17]:

HO: A = 0
Hl: }\ * 0
which can be tested through the following statistics:

n 1
Yiz1Ti—3NTo

nto?
12

Z= (33)

Where:
Z represent calculate test.

™ . 7; isthe sum of the accident times for a period (0, 7],
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n represents the number of accidents that occur in a period (0, 7,].

Log-Log Plot

= N [
S N D ow oo

Intensity A(t)

°
o

3

o
N
a
o

Time t (hours)

Figure 1. Cumulative number of days of operation between two shutdowns with their occurrence times on a

logarithmic scale.
The scatter plot shows evident linear tendency, which implies that the data is highly suitable to the modeling by means
of the Inverse Rayleigh Process (IRP) function. Similar performance of the Maximum Likelihood Estimation (MLE) and
Bayesian Estimation (Bayes) especially in a sample size of 50 could be referred to as the strengths on which the two
methodologies are based on. Both also attempt to reduce the gap between observed and predicted values, but they do so
in different inferential structures MLE finds the value of the parameters that maximizes likelihood of the data given a set
of (fixed) parameters, whereas Bayes use prior information to update a given (prior) distribution to a posterior using the
data. This agreement in the performance demonstrates the strength of the performance of the LRP model at moderate
sample size.

4.2. Homogeneity Testing for the Inverse Rayleigh Process

To test the homogeneity of the data under study, we used the statistical laboratory in formula (32), with a
MATLAB/R2019a program specifically designed for this purpose. The calculated value of |Z| was found to be 64.2496,
which is higher than its corresponding tabular value of 1.96 at a significance level of 0.05. Therefore, we reject the null
hypothesis and accept the alternative hypothesis. This indicates that the process under study is nonhomogeneous.

Table 4. RMSE values for methods used to estimate the IRP parameters

Unite Size Method a RMSE BIC
MLE 0.31268 26.948 24.726

Bay I 0.36394 22906  20.716
M1 49 Bay II 0.44898 18.303* 16.103*
Bay II 0.45423  38.306 36.106

Bay IV 0.36995 43.019 41.018

MLE 0.2248 29.985 27.775

Bay I 0.3870 27576 25476
M2 50 Bay II 0.4637 23.703* 21.503*
Bay II 0.4682 24.041 22.031

Bay IV 0.3827 27.308 25.108

MLE 0.30016  25.439 23.239

Bay I 0.36025  22.673 20.473
Bay II 0.43591 19.322* 17.122*

Bay Il 0.43956 19.62 17.61

M3 50
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Bay [V 0.35682 22,559  20.359

Table 4 shows estimate of parameters of Inverse Rayleigh Process (IRP) computed from the proposed estimation
schemes of this study. From the values of the Root Mean Square Error (RMSE), Bayes 11 model performed better as it
provided more efficient estimators in describing the underlying structure in data. The figures following below illustrate
the IRP as estimated by each technique, compared to the actual cumulative failure intervals realized at the power station
hence demonstrating the relative precision of techniques of estimation. Figures are provided here that estimate the
cumulative failure functions using both Maximum Likelihood and Bayesian methods and they are compared to the
observed cumulative failure data for each station. The results show that both models can match actual behavior, but on
all stations, Bayes Il fits better than the open-source procedure.

Real Data

o
3

Bayes |
Bayes Il
Bayes Il
Bayes IV
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5

Number of Failures
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0 20 40 60 80 100 120
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Figure 2. Comparative Estimation of the Cumulative Failure Function for Station M1 Based on MLE and Bayesian
Methods under the Inverse Rayleigh Process Model.
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Figure 3. Parsimonious model fitting of the cumulative failure function for Station M2 employing Maximum
Likelihood and Bayesian estimators based on the Inverse Rayleigh process.
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Figure 4. Comparative Estimation of the Cumulative Failure Function for Station M3 Based on MLE and Bayesian
Methods under the Inverse Rayleigh Process Model.

Figures above display the estimated failure functions for the Mosul Gas Power Plant with different estimation procedures.
It is clear from comparing the models that the Bayesian technique, especially the Bayes Il model, is closest to fitting the
data. Therefore, the Bayesian method gives more accurate and efficient results compared to other estimation strategies
when trying to reveal the way failures happen. The measured conclusion that is supported by real-life data proves the
theoretical and simulation-based results, especially focusing on the effectiveness of Bayes Il estimator. The last section
concludes the findings, summarizes them with the available evidence based on both synthetic and actual datasets, and
discusses how to apply the current work to the domain of reliability modeling and future methodological advancement,
as well as interdisciplinary application.

5. Conclusion and Future Work

The study comes up with a way to fit the Inverse Rayleigh Process into a Non-Homogeneous Poisson Process (NHPP)
and applies maximum likelihood estimation and Bayesian inference. Results from simulations and inspection of real
failures at the Mosul Gas Power Plant prove that using the Bayes Il method makes the parameter estimates more reliable
and accurate than with classical statistics. In the simulation studies, Bayes Il was always better than the other estimators
at providing accurate and stable estimations. The Bayes Il model was found to be the superior choice for modeling the
failure behaviors of the repairable system in the power plant study. By performing homogeneity testing, it was confirmed
that the IRP was not homogeneous and modeling with a NHPP was justified. Furthermore, the use of the Laplace
approximation allowed for doing Bayesian inference in an efficient way, despite the fact that the posterior distributions
were not easy to evaluate. All in all, the study demonstrates that Bayesian techniques are especially useful when there is
available information, in dealing with failure rates that change over time in complex systems. Moving forward, researchers
could widen the reach of this Bayesian model to handle failures involving more than one attribute by using hierarchical
or copula-based models. It is also possible to perform real-time estimation using moving priors with the help of particle
filters. Additionally, nonparametric Bayesian techniques such as those based on Dirichlet Process priors, can allow for
further flexibility. Looking at the results of machine learning models like neural networks and ensembles might reveal
more about financial conditions when there is enough data. A next step would be to investigate the uses and success of
IRP-based NHPP modeling in diverse areas such as aerospace, telecommunications and healthcare. In addition to being
statistically interesting, the results are of great practical value in the engineering and industrial reliability analysis worthy
of study. A correct degree of modeling failure behavior with the Inverse Rayleigh Process allows maintenance engineers
and reliability managers to better time actions of preventive maintenance, minimize occurrence of unplanned downtimes,
and maximize use of resources. This is especially important with fields with mission-critical reliability like generation of
power, manufacturing and aerospace systems. The superiority in estimation displayed by the Bayesian estimator
particularly in situations of limited data makes it possible to state that even when the organizations operate on reoccurring
or speculative failure records, they would still be able to generate sound reliability estimates supporting decision-making
through data analytics in the field.
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