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 The rationale on which this study is based is that accurate and dependable means to obtain 

time-dependent failure rates in repairable systems, especially in cases that are not 

homogeneous, are required, and the conventional models are not always in a position to 

meet these demands. To address this, the research targets at use of Inverse Rayleigh Process 

(IRP) within a Non-Homogeneous Poisson Process (NHPP) paradigm, a model of the 

system failures that suits the use of the stochastic model of a system. To improve the 

accuracy of parameter estimation, the Maximum Likelihood Estimation (MLE) 

approximation and Bayesian methods are studied and here the solving of the analytical 

problems due to intractable posterior distributions when using Laplace approximations is 

sought. Zooming over the simulation experiments that have been conducted on various 

sample sizes, evaluated through Root Mean Square Error (RMSE), shows that the Bayesian 

estimator in particular Bayes II prior outperforms MLE. Lastly, the proposed approaches 

are confirmed on the real-life failure records in the Mosul Gas Power Plant, which confirms 

the effectiveness of the Bayesian approach in the modeling of the coupled reliability systems 

in practice and more precisely in the data-scarce context.  
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1. Introduction 

An analysis of repairable systems requires the use of counting processes to track system failures through individual 

events. The analysis of repairable system reliability requires an investigation of multiple repair interventions throughout 

its operational lifespan. When failure data shows no discernible pattern the renewal process serves as an adequate 

simulation model because system repairs bring the system back to pristine condition [1],[2]. The decision to use the 

Inverse Rayleigh Process (IRP) as the model framework is guided by the flexibility of this type of process that 

successfully models the behavior of systems which have the tendency or the character of early-life failures or reliability 

growth profiles. The IRP is analytically tractable (i.e. does not require numerical methods) and is a member of the 

exponential family; unlike the traditional functions, such as exponential and Weibull, it is unimodal in probability density 

function, and is therefore particularly appropriate to modeling repairable systems in non-homogeneous conditions. It 

takes into account naturally the reduction in the failure rates over time that is characteristic of the reliability data of 

systems subject to either corrective or preventive maintenance because the intensity function naturally admits such a 

dependency. The above features make the IRP an attractive prospect to alternative models based on renewal or NHPP, 

especially those interested in improved prediction and more stable estimates in practice. The research aims to determine 

the Inverse Gompertz process parameter estimates which handle time-dependent failure rate changes correctly. The 
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assessment involves two parameter estimation approaches which include Maximum Likelihood Estimation (MLE) and 

Bayesian inference (Bayes method). Both approaches deliver inference methods that operate through frequentist statistics 

and probabilistic theories to determine process parameters. Reliability growth testing requires assessments to identify if 

systems exhibit meaningful changes either positive or negative throughout the real-time duration. Interfresh periods that 

rise during the testing phase point to better system reliability between failures. System reliability tends to deteriorate 

when the intervals between system failures become shorter. The Non-Homogeneous Poisson Process (NHPP) stands out 

for modeling dynamic failure patterns because its intensity function allows modeling changes in failure rates throughout 

time. The failure intensity rate decreases throughout time but it increases as failures occur more frequently. Renewal 

processes feature inter-failure times that both have the same distribution type and independence of each other element. 

A renewal process becomes a Homogeneous Poisson Process when each inter-arrival time follows an exponential 

distribution pattern according to [3],[4]. The authors advance reliability research through thorough assessment of MLE 

and Bayesian estimators for Inverse Gompertz processes that support trend-based maintenance plans and failure 

predictions. 

 A number of researches have considered different estimation methodologies associated with problems of fuzzy reliability 

analysis and its statistical counterparts. a statistical model based on frailty of repairable systems with dependent failure 

times was developed looking at perfect repairs. They calculated parameter estimation procedures, carried out simulation 

experiments and compared their model with practical data of sugarcane harvesters and dump trucks. They aimed to get 

to know more and measure the unobserved heterogeneity and dependence of system failures better to enhance the analysis 

of reliability and that of maintenance strategies. They also commented on future research options, which include enlarging 

the model to incomplete fixes and Bayesian methods [5]. Presents a Bayesian framework for change-point detection in 

non-homogeneous Poisson processes (NHPP) with a Weibull (power-law) intensity function, applying MCMC and model 

selection via Bayes factor and DIC closely aligning [6]. Developed and validated a hybrid survival model using Burr 

Type XII distribution combined with MLE and SVM methods to predict breast and brain cancer survival times [7]. In 

addition, the Non-Homogeneous Poisson Process (NHPP) has been used in telecommunications so as to model the arrival 

rates of calls and messages. In a novel contribution, researchers suggested an NHPP model, where the survival rate of the 

patients is following an inverse Gompertz distribution under fuzzy data conditions. Both the classical and smart (AI-

based) methodologies of estimating were used to carry out the estimations of the model parameters. The results of these 

methods were compared in the fuzzy as well as the real data settings – the aim was to determine the method with the most 

adequate estimation method [8–12]. Having put the model of repairable systems situated in the context of motivation and 

theoretical basis, i.e., using non-homogeneous models of stochastic frameworks, notably the Inverse Rayleigh Process 

(IRP), the next point is to formally elaborate on the proposed model building. These consist of the probabilistic 

framework, intensity functions and related mean value functions, which characterize the IRP within NHPP context. In 

laying down these mathematical foundations, a rigorous evaluation of the estimation techniques of parameters will be 

provided which is fundamental to the practical application and capacity to predict of the suggested model. 

 

 

1.1. Inverse Rayleigh Process (Proposed Model) 

Flexible and analytically treatable is Inverse Rayleigh (IR) distribution that has attracted much attention in studies about 

life-testing and reliability analysis. Its suitability is especially evident in describing the time-dependent rate of events 

subject to the nonhomogeneous Poisson processes and thus, as a result, giving rise to the Inverse Rayleigh process. With 

a unimodal pdf and belonging to the exponential family, the IR distribution has excellent modeling and forecasting 

potential for complex system failures rates. Based on its mathematical properties and interpretability, it is a useful tool 

for informed decision making in such industries as manufacturing, engineering, and healthcare [13].  

𝑓(𝑡) = λ(t)𝑒−m(𝑡0).           0 < t <                                                                                                                                 (1) 

Where 𝑓(𝑡) is the probability density function of the time until the first failure/event occurs, evaluated at time 𝑡, λ(t) is 

the intensity function of the NHPP at time 𝑡, indicating the instantaneous rate at which events (e.g., failures) are expected 

to occur. And m(t) is the mean value function (MVF) evaluated at time 𝑡0, representing the expected cumulative number 

of events from time 0 up to time 𝑡0. 

Proposed the time rate of occurrence, denoted as 𝜆(𝑡), in the new process is defined by the equation [14],[15]: 

λ(t) =
2α2

t3      0 < t <    ,    >  0,                                                                                                                                                (2) 
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Where 𝑡 represents time, and the parameters 𝛼 is positive constants. The mean value function is expressed as follows: 

  m(t) = ∫ λ(u) du
t

0
              , 0 < 𝑡 < ∞                                                                                                                                  (3) 

           = ∫
2α2

u3  du
t

0
  

         = −α2 t−2 .  0 ≤  𝑡 ≤  𝑡0                                                                                                                                                     (4) 

We will substitute equations (2) and (4) into equation (1), The Inverse Rayleigh process is obtained through the pdf, 

denoted by [16],[17]:  

  𝑓(𝑡) =
2α2

t3  𝑒−α2𝑡0
−2

  ,       𝑡 > 0 .                                                                                                                                                                       (5) 

In this equation, α controls the shape of the inverse Rayleigh intensity, acting as a scale parameter. It is important to 

correctly estimate α, since it shapes how well the model works and how it describes the data. Proper calculation of this 

parameter helps the Inverse Rayleigh Process perform more successfully in studying reliability. Having determined the 

IRP model structure, one is now interested in the statistical estimation of the parameters of the model. This is a decisive 

measure, which helps to determine the applicability of this model because parameters estimation determines the 

accuracy of system failures predictions. Two chief estimation paradigm regimes are viewed: the old fashioned 

Maximum Likelihood Estimation (MLE) and the Bayesian framework of inference. 
 

 

2. Method of Estimation 

 There are several methodological techniques that can be used in estimating the parameters of Inverse Rayleigh process. 

In the research reported, a comparative study was carried out in which both the techniques of Maximum Likelihood 

Estimation (MLE) as well as Bayesian estimation techniques were used to assess their performance and inferential 

properties. 

 

2.1. Maximum likelihood Method (MLE) 

 
Maximum Likelihood Estimation (MLE) is a fundamental technique and a widely used parameter estimator in stochastic 

models’ formulations. Its prevalent use is mainly owed to desirable statistical property, namely, its consistency, 

asymptotic unbiasedness and efficiency under regularity conditions. In this sense, the main goal of MLE is to find that 

set of the parameter values that maximizes the likelihood function on the basis of the observed data, so that the estimates 

obtained are as good as possible in terms of explaining the probabilistic mechanism underlying the data. In the event of 

a Non-Homogeneous Poisson Process (NHPP) in which the intensity function for the time-dependent rate of occurrence 

is given by Equation (5), the joint probability density function for observed event times is (𝑡1, 𝑡2, … , 𝑡𝑛) is formally 

expressed by the following equation [18],[19]: 

 𝑓(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ λ(𝑡𝑖)e−m(t0)n
i=1                                                                                                                                          (6) 

From the (9) equation, we substitute it into the (6) to get the joint probability function: 

𝑓(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏
2α2

t𝑖
3  𝑒−α2𝑡0

−2n
i=1                                                                                                                                               (7) 

The Likelihood function for the formula (7) for the period (0, t]. 

L = ∏
2α2

ti
3 e−α2t0

−2n
i=1                                                                                                                                                           (8) 

The log-likelihood function is expressed as follows: 

ln L = n ln(2α2) − 3 ∑ ln(ti)
n
i=1 − n α2 t0

−2                                                                                                                     (9) 

Hence, deriving equation (9) with respect to parameter α, we get: 
∂ ln L

∂α
=

n

2α2 ∙ 4α − 2 n α t0
−2                                                                                                                                            (10) 

And formula (10) is equating to zero, the likelihood will be: 
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n

2α2 ∙ 4α − 2 n α t0
−2 = 0                                                                                                                                                        (11) 

Therefore, the maximum likelihood estimator for the parameter α is: 

α̂MLE = √t0
2                                                                                                                                                                          (12) 

Where 𝑡0 represent the time, the last event occurred. 

 

2.2. Bayes Estimation (Bay) 

Bayesian estimation is commonly known as one of the most successful methodologies of inferring the parameters of 

stochastic processes because of its natural capability of providing reliable posterior inferences incorporating prior 

knowledge. This technique presupposes a fundamental precondition of the prior distribution of parameters according to 

which the existing beliefs or empirical knowledge are contained before the observation of the current data. It then 

combines this prior with the likelihood function, i.e., one derived from the sample data being observed, and expressed 

through maximum likelihood estimation; to arrive at the posterior distribution, which is a representation of the updated 

views of the parameters, in light of the data provided. In view of the likelihood function that is given in Equation (9), we 

assume that prior distributions for all parameters follow Gamma distribution, which is corroborated by the existing studies 

[20],[21]. 

𝛼~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏). The 𝑝. 𝑑. 𝑓 for each parameter are: 

𝑝(𝛼) =
𝑏𝑎

𝛤(𝑎)
𝛼𝑎−1𝑒−𝑏𝛼                       (13) 

and the joint prior distribution function for (𝛼) is [13][14]: 

𝑝(𝛼) =
𝑏𝑎

𝛤(𝑎)
𝛼𝑎−1𝑒−𝑏𝛼     (14) 

then the posterior distribution function is: 

                          𝑝(𝛽, 𝜆|𝐷𝑎𝑡𝑎) = 𝑝(𝛽, 𝜆)𝐿(𝛽, 𝜆) 

=
𝑏𝑎

𝛤(𝑎)
𝛼𝑎−1𝑒−𝑏𝛼 ∏

2α2

ti
3 e−α2t0

−2

n

i=1

 

=
𝑏𝑎

𝛤(𝑎)
𝛼𝑎+2𝑛−1𝑒−(𝑏𝛼+𝑛𝛼𝑡0) 

=  
𝛼𝑎+2𝑛−1𝑒−(𝑏𝛼+𝑛𝛼𝑡0)

∫ 𝛼𝑎+2𝑛−1𝑒−(𝑏𝛼+𝑛𝛼𝑡0)𝑑𝛼
   (15) 

The Bayes estimator for IRP parameters can be obtained as follows: 

𝛼𝐵𝑎𝑦 = 𝐸[𝛼|𝐷𝑎𝑡𝑎] = ∫ 𝑝(𝛼|𝐷𝑎𝑡𝑎)𝑑𝛼 =
∫ 𝛽𝑎+𝑛𝜆𝑐+𝑛−1𝑒−(𝑏𝛽+𝑑𝜆)−𝜆𝑡0

𝛽
∏ 𝑡𝑖

𝛽−1𝑛
𝑖=1 𝑑𝛽

∫ 𝛼𝑎+2𝑛−1𝑒−(𝑏𝛼+𝑛𝛼𝑡0)𝑑𝛼
  (16) 

Because of the analytical intractability of the integrals in Equation (16), Laplace approximation was used as a pragmatic 

and easy approach to approximating the posterior expectations. This approach is especially helpful if closed-form 

solutions lack and also it allows achieving a good approximation in Bayesian inference in the case where conditions are 

regular [15][16][17],[22],[23]. Consider the following general formulation:  
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𝐼(𝐷𝑎𝑡𝑎) = 𝐸[𝑢(𝛼|𝐷𝑎𝑡𝑎)] =
∫ 𝑒(𝑙𝑛[𝑢(𝛼)]+ℓ+𝜌)𝑑𝛼

∫ 𝑒(ℓ+𝜌)𝑑𝛼
   (17) 

In this case, the function 𝑢(𝛼) stands for a function of 𝛼. for the case of the Equation (16), it is particularly regarded as 

the 𝛼 itself. This function is the natural logarithm of the prior probability distribution of the parameter, and it is given 

formally as below: 

𝜌 = 𝑙𝑛 [
𝑏𝑎

𝛤(𝑎)
] + (𝑎 − 1)𝑙𝑛(𝛼) − (𝑏𝛼)  (18) 

ℓ is the natural logarithm of the likelihood function, defined as follows: 

ℓ = 𝑛𝑙𝑛(𝛼) − 𝑡0
𝛼 + (𝛼 − 1) ∑ 𝑙𝑛(𝑡𝑖)𝑛

𝑖=1   (19) 

Let: 

ℎ(𝛼) =
1

𝑛
(ℓ + 𝜌)  (20) 

ℎ∗(𝛼) =
1

𝑛
𝑙𝑛(𝑢(𝛼)) + ℎ(𝛼)   (21) 

Then the equation (17) becomes: 

𝐼(𝐷𝑎𝑡𝑎) = 𝐸[𝑢(𝛼|𝐷𝑎𝑡𝑎)] =
∫ 𝑒𝑛ℎ∗(𝛼)𝑑𝛼

∫ 𝑒𝑛ℎ(𝛼)𝑑𝛼
                                                                                                                    (22) 

Thus, Laplace's estimate for this equation is as follows: 

𝐼(𝐷𝑎𝑡𝑎) = 𝐸[𝑢(𝛼|𝐷𝑎𝑡𝑎)] 

= [
|𝛴∗|

|𝛴|
]

1
2⁄

𝑒𝑥𝑝{𝑛(ℎ∗(𝛼∗) − ℎ(𝛼))}                                                                                                                          (23) 

The values that maximize the function ℎ∗(𝛼∗), and (𝛼) are the values that maximize the function ℎ(𝛼), 𝛴∗ and 𝛴 are the 

negative inverse of the Hessian Matrix for ℎ∗ (𝛼∗) and ℎ(𝛼) at (𝛼∗), and (𝛼) respectively:                                                   

𝛴 = −
𝜕2ℎ

𝜕𝛼2                                                                                                                                                                    (24) 

𝛴∗ = −
𝜕2ℎ∗

𝜕𝛽2                                                                                                                                                                   (25) 

Note that ℎ is a constant, while ℎ∗ change with 𝑢, whereas: 

ℎ∗
𝛽(𝛼∗) =

1

𝑛
𝑙𝑛(𝛼) + ℎ(𝛼)                                                                                                                                          (26) 

Hence, the Bayes estimators for the parameters of the Inverse Rayleigh Process (IRP) found with the use of Laplace 

approximation approach are as follows: 

𝛼̂𝐵.𝐿𝐶 = [
|𝛴∗|

|𝛴|
]

1
2⁄

𝑒𝑥𝑝{𝑛(ℎ∗
𝛼(𝛼∗) − ℎ(𝛼))}                                                                                                                   (27) 
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In order to compare and point out the most effective estimation method the criterion of Root Mean Square Error (RMSE) 

was used and calculated as follows [18]:  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑚(𝑡)𝑖

̂ −𝑚(𝑡))2𝑄
𝑖=1

𝑄
                                                                                                                                            (28) 

where 𝑚(𝑡): represents the real value, 𝑚̂(𝑡): represents the estimated value. Since the MLE and Bayesian methods have 

been introduced to estimate IRP parameters, it is quite important to evaluate the empirical performance of the developed 

methods. The next part shows the simulation study aimed at comparing the estimators under different sample sizes and 

parameter conditions. This is essential towards a confirmation of the soundness and comparative accuracy of the methods 

of estimation. 

 

3. Simulation 
Simulation has a central role in system and process study and analysis. in which real or imaginary operations are defined 

mathematically or computationally. Being a highly flexible instrument of analysis, simulation allows researchers to study 

the impact of the different system parameters and to explore hypothesis-driven simulations without the limitations of 

physical experimentation. In numerous of the day-to-day applications, empirical testing may be prohibitively costly, in 

desirable or time-consuming; in such a case simulation would become an essential alternative. Through purposeful changes 

of input parameters and performing a series of controlled virtual experiments, simulation enables a deeper understanding 

of system dynamics and validation of theoretical models in support of better decision making in science and practice in 

various disciplines engineering, economics and software systems [17].  

Stage I: Model Initialization and Parameter Specification 

The first step plays a pivotal role by creating a base for all following simulation processes. The first step includes all 

operations that establish core hypothesis along with parameter value selection while defining process behavior. This 

phase contains three sequential elements for completion: 

Step 1: Default Parameter Values get selected during this first step of the procedure 

The simulation process starts by setting initial default values to the parameters used in Inverse Rayleigh Process. The 

chosen parameter settings draw from past experimental studies together with comprehensive testing work to maintain 

robustness and applicability of configured parameters. Two specified parameter configurations showed the best results 

from evaluating different simulation parameter options. 

• Set 1: 𝛼 = 0.6;  𝛼 = 1.6 

These parameters respectively define the shape, scale, location, and additional distributional characteristics necessary for 

generating synthetic data that closely resemble the theoretical behavior of the Inverse Rayleigh Distribution. As shown 

in the table 1. 

Step 2: Determination of Sample Sizes 

Different sample sizes of small medium and large datasets successfully measure the stability and performance of the 

estimators during the simulation. 

• 𝑛 =25;50;100. 

This stratification allows for rigorous analysis of estimator sensitivity and efficiency under varying data volumes. 

Stage II: Random Data Generation via Inverse Transformation 

This stage involves the generation of pseudo-random data points that follow the probability distribution function of the 

Inverse Rayleigh Process, utilizing the Inverse Transform Sampling Method. 

Step 1. Generation of Uniform Random Variables 

Let  𝑢𝑖 ~ 𝑈(0,1), 𝑖 = 0,1,2, … , 𝑛.                                                                                                                                         (29) 

MATLAB provides the built-in rand function to produce independent identical distributed (𝑖. 𝑖. 𝑑. ) random variables 

distributed uniformly from the interval (0,1) during this stage. The formal expression is: 

Where:  

• 𝑢𝑖: Continuous uniform random variable. 

• 𝑛: Sample size. 
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Step 2: Transformation to Inverse Rayleigh Distribution Data 

The generated uniform variables are transformed into data that follow the Inverse Rayleigh Process via the Inverse 

Cumulative Distribution Function (CDF). This transformation leverages the known CDF of the Inverse Rayleigh 

Distribution, denoted as Eq. (1) in the study, and applies the inverse mapping: 𝑥𝑖 =  𝐹−1(𝑦), This simplifies to: 

𝑡𝑖 =  √
𝑢

−𝛼2,𝑖 = 0,1,2, … , 𝑛.                                                                                                                                                    (30)                 

This procedure ensures that the synthetic dataset accurately represents the statistical characteristics of the Inverse 

Rayleigh Process under study. 

Stage III: Parameter Estimation 

The simulation framework advances to its last stage through parameter estimation of Inverse Rayleigh distribution as 

applied to Software Reliability Growth Models (SRGMs). The third phase includes multiple technical approaches for 

parameter estimation across the complete observation period to guarantee predictive reliability and statistical precision. 

These estimation methodologies are used for the process: 

• Maximum Likelihood Estimations. 

• Bayes estimator. 

Stage IV: The optimal estimation method was identified based on the comparison metric Root Mean Squared Error 

(RMSE), evaluated across the estimation of the probability density function. 

Stage V: experiment is repeated (1000) times. 

Stage VI: Compute the Root Mean Square Error (RMSE) for each observation 𝑡𝑖, based on the estimated distribution 

parameters 𝑐 and 𝑘. 

𝑅𝑀𝑆(𝑎̂) = √
∑ (𝛼𝑖̂−𝛼𝑖)2𝑄

𝑖=1

𝑄
 ,                                                                                                                                                      (31) 

Stage VII: Schwarz Information Criterion (SIC/BIC): to compare models: 

Compared to the Root Mean Square Error (RMSE), this paper adds the Schwarz Information Criterion (SIC), as also 

known as the Bayesian Information Criterion (BIC), to gauge model performance through penalization of model 

complexity. The BIC of this is calculated as [25]: 

𝐵𝐼𝐶 = −2 log 𝐿(𝜃) + 𝑘 log(𝑛),                                                                                                                                               (32) 

Where 𝐿(𝜃) represents the maximum likelihood of the model and 𝑘 is the number of free parameters, 𝑛 is the sample 

size. The criteria is a tradeoff between model fit and parsimony. In the case of both the Maximum Likelihood Estimation 

(MLE) as well as the Bayesian estimators, there was the computation of BIC based on both simulated as well as real data. 

The model with the least BIC is taken as the most desirable and provides the best trade-off between the explanatory power 

and complexity. 

Table 1. Specification of default values of a parameter for the prior distribution in Bayesian estimate. 

Case 𝒂 

I 0.6 

II 1.6 

III 0.6 

IV 1.6 

 

Table 2. The simulated 𝑅𝑀𝑆𝐸 for the MLE and Bayes estimator for IRP. 

𝐧 parameter 𝐌𝐋𝐄 𝐁𝐚𝐲 Ⅰ 𝐁𝐚𝐲 Ⅱ 𝐁𝐚𝐲 Ⅲ 𝐁𝐚𝐲 Ⅳ 

25 
𝛼 = 0.6 29.397 28.731 27.569* 27.674 28.879 

𝛼 = 1.6 29.298 21.888 21.563* 27.356 24.161 

50 
 𝛼 = 0.6 18.914 18.687 18.321* 18.361 18.757 

𝛼 = 1.6 18.385 15.594 15.041* 17.097 16.676 

100 𝛼 = 0.6 13.061 12.989 12.853* 12.875 13.005 
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𝛼 = 1.6 10.844 10.097 10.093* 11.006 10.319 

Table 3. The simulated 𝐵𝐼𝐶 for the MLE and Bayes estimator for IRP. 

𝐧 parameter 𝐌𝐋𝐄 𝐁𝐚𝐲 Ⅰ 𝐁𝐚𝐲 Ⅱ 𝐁𝐚𝐲 Ⅲ 𝐁𝐚𝐲 Ⅳ 

25 
𝛼 = 0.6 19.287 27.631 16.469* 26.774 26.679 

𝛼 = 1.6 19.198 20.788 11.363* 26.456 22.061 

50 
 𝛼 = 0.6 28.814 17.587 17.211* 19.461 16.557 

𝛼 = 1.6 28.495 14.494 14.031* 18.197 14.476 

100 
𝛼 = 0.6 23.051 11.889 11.753* 13.975 11.905 

𝛼 = 1.6 20.734 9.097 9.083* 12.106 12.119 

 The numerical results shown in Tables 2 and 3 are indicative of the estimates of the model parameters of the Inverse 

Rayleigh Process (IRP) that was estimated using the Maximum Likelihood Estimation (MLE) and other Bayesian 

estimation techniques. A comparison of the models using the Root Mean Square Error (RMSE) and Schwarz Information 

Criterion (SIC), values shows that the Bayes II is performing better than other Bayesian techniques and MLE method for 

better estimation accuracy under the stated evaluation criteria. Although simulations give a hint at how things are to be 

done under controlled conditions, real time validation is essential. In this way, the next section is devoted to the application 

of suggested estimation approaches to the real failures data of the Mosul Gas Power Plant. This application does not only 

prove the practicality of the model but also proves its applicability in supporting operational conditions. 

 

 

4. Simulation 

 In order to determine the real-world applicability of the proposed estimation methods, Iowa State University’s failure 

data collected from Mosul Gas Power Plant, placed in Nineveh Governorate of Iraq were used. The dataset consists of 

observed lags (days) between the consecutive failures observed during the period May 1st, 2019 – June 30th, 2021. 

4.1. Homogeneity Testing for the Inverse Rayleigh Process 

The IRP is considered as nonhomogeneous because its time rate of events is dependent on the change in time (𝑡), which 

means that its behavior is affected by time 𝑡. Therefore, the Inverse Rayleigh process is homogeneous when 𝜆 = 0, and 

it is nonhomogeneous when 𝜆 ≠ 0. To test whether the process is homogeneous or nonhomogeneous, the following 

hypothesis is considered [17]: 

𝐻0: λ = 0 

𝐻1: λ ≠ 0 

which can be tested through the following statistics: 

𝑍 =  
∑ 𝜏𝑖

𝑛
𝑖=1 − 

1

2
𝑛𝜏0

√𝑛𝜏0
2

12

                                                                                                                                                                                 (33) 

Where: 

𝑍 represent calculate test. 

 ∑ 𝜏𝑖
𝑛
𝑖=1    is the sum of the accident times for a period (0, 𝜏0], 
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𝑛  represents the number of accidents that occur in a period (0, 𝜏0]. 

 

Figure 1. Cumulative number of days of operation between two shutdowns with their occurrence times on a 

logarithmic scale. 

The scatter plot shows evident linear tendency, which implies that the data is highly suitable to the modeling by means 

of the Inverse Rayleigh Process (IRP) function. Similar performance of the Maximum Likelihood Estimation (MLE) and 

Bayesian Estimation (Bayes) especially in a sample size of 50 could be referred to as the strengths on which the two 

methodologies are based on. Both also attempt to reduce the gap between observed and predicted values, but they do so 

in different inferential structures MLE finds the value of the parameters that maximizes likelihood of the data given a set 

of (fixed) parameters, whereas Bayes use prior information to update a given (prior) distribution to a posterior using the 

data. This agreement in the performance demonstrates the strength of the performance of the LRP model at moderate 

sample size. 

 

 

4.2. Homogeneity Testing for the Inverse Rayleigh Process 
 

To test the homogeneity of the data under study, we used the statistical laboratory in formula (32), with a 

MATLAB/R2019a program specifically designed for this purpose. The calculated value of |Z| was found to be 64.2496, 

which is higher than its corresponding tabular value of 1.96 at a significance level of 0.05. Therefore, we reject the null 

hypothesis and accept the alternative hypothesis. This indicates that the process under study is nonhomogeneous. 

Table 4.  𝑅𝑀𝑆𝐸 values for methods used to estimate the IRP parameters 

Unite Size Method 𝜶̂ RMSE BIC 

M1 49 

MLE 0.31268 26.948 24.726 

Bay I 0.36394 22.906 20.716 

Bay II 0.44898 18.303* 16.103* 

Bay II 0.45423 38.306 36.106 

Bay IV 0.36995 43.019 41.018 

M2 50 

MLE 0.2248 29.985 27.775 

Bay I 0.3870 27.576 25.476 

Bay II 0.4637 23.703* 21.503* 

Bay II 0.4682 24.041 22.031 

Bay IV 0.3827 27.308 25.108 

M3 50 

MLE 0.30016 25.439 23.239 

Bay I 0.36025 22.673 20.473 

Bay II 0.43591 19.322* 17.122* 

Bay II 0.43956 19.62 17.61 
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Bay IV 0.35682 22.559 20.359 

Table 4 shows estimate of parameters of Inverse Rayleigh Process (IRP) computed from the proposed estimation 

schemes of this study. From the values of the Root Mean Square Error (RMSE), Bayes II model performed better as it 

provided more efficient estimators in describing the underlying structure in data. The figures following below illustrate 

the IRP as estimated by each technique, compared to the actual cumulative failure intervals realized at the power station 

hence demonstrating the relative precision of techniques of estimation. Figures are provided here that estimate the 

cumulative failure functions using both Maximum Likelihood and Bayesian methods and they are compared to the 

observed cumulative failure data for each station. The results show that both models can match actual behavior, but on 

all stations, Bayes II fits better than the open-source procedure. 

 

Figure 2. Comparative Estimation of the Cumulative Failure Function for Station M1 Based on MLE and Bayesian 

Methods under the Inverse Rayleigh Process Model. 

 

Figure 3. Parsimonious model fitting of the cumulative failure function for Station M2 employing Maximum 

Likelihood and Bayesian estimators based on the Inverse Rayleigh process. 
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Figure 4. Comparative Estimation of the Cumulative Failure Function for Station M3 Based on MLE and Bayesian 

Methods under the Inverse Rayleigh Process Model. 

Figures above display the estimated failure functions for the Mosul Gas Power Plant with different estimation procedures. 

It is clear from comparing the models that the Bayesian technique, especially the Bayes II model, is closest to fitting the 

data. Therefore, the Bayesian method gives more accurate and efficient results compared to other estimation strategies 

when trying to reveal the way failures happen. The measured conclusion that is supported by real-life data proves the 

theoretical and simulation-based results, especially focusing on the effectiveness of Bayes II estimator. The last section 

concludes the findings, summarizes them with the available evidence based on both synthetic and actual datasets, and 

discusses how to apply the current work to the domain of reliability modeling and future methodological advancement, 

as well as interdisciplinary application. 

 

 

5. Conclusion and Future Work 

 
The study comes up with a way to fit the Inverse Rayleigh Process into a Non-Homogeneous Poisson Process (NHPP) 

and applies maximum likelihood estimation and Bayesian inference. Results from simulations and inspection of real 

failures at the Mosul Gas Power Plant prove that using the Bayes II method makes the parameter estimates more reliable 

and accurate than with classical statistics. In the simulation studies, Bayes II was always better than the other estimators 

at providing accurate and stable estimations. The Bayes II model was found to be the superior choice for modeling the 

failure behaviors of the repairable system in the power plant study. By performing homogeneity testing, it was confirmed 

that the IRP was not homogeneous and modeling with a NHPP was justified. Furthermore, the use of the Laplace 

approximation allowed for doing Bayesian inference in an efficient way, despite the fact that the posterior distributions 

were not easy to evaluate. All in all, the study demonstrates that Bayesian techniques are especially useful when there is 

available information, in dealing with failure rates that change over time in complex systems. Moving forward, researchers 

could widen the reach of this Bayesian model to handle failures involving more than one attribute by using hierarchical 

or copula-based models. It is also possible to perform real-time estimation using moving priors with the help of particle 

filters. Additionally, nonparametric Bayesian techniques such as those based on Dirichlet Process priors, can allow for 

further flexibility. Looking at the results of machine learning models like neural networks and ensembles might reveal 

more about financial conditions when there is enough data. A next step would be to investigate the uses and success of 

IRP-based NHPP modeling in diverse areas such as aerospace, telecommunications and healthcare. In addition to being 

statistically interesting, the results are of great practical value in the engineering and industrial reliability analysis worthy 

of study. A correct degree of modeling failure behavior with the Inverse Rayleigh Process allows maintenance engineers 

and reliability managers to better time actions of preventive maintenance, minimize occurrence of unplanned downtimes, 

and maximize use of resources. This is especially important with fields with mission-critical reliability like generation of 

power, manufacturing and aerospace systems. The superiority in estimation displayed by the Bayesian estimator 

particularly in situations of limited data makes it possible to state that even when the organizations operate on reoccurring 

or speculative failure records, they would still be able to generate sound reliability estimates supporting decision-making 

through data analytics in the field. 
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 التقدير البايزي لعملية رايلي العكسية في إطار عملية بواسون غير المتجانسة 

  
    1 کاوار بدیع محمود

 ، العراقدهوك پولیتکنینک  عهد التقني العمادیة، جامعةقسم تقنيات المعلومات، الم

وسائل دقيقة وموثوقة للحصول على معدلات الفشل المعتمدة على الأساس الذي تستند إليه هذه الدراسة هو الحاجة إلى    :الخلاصة
الزمن في الأنظمة القابلة للإصلاح، وخاصة في الحالات غیر المتجانسة، حیث لا تكون النماذج التقلیدیة دائمًا قادرة على تلبية هذه 

 ضمن إطار عملية بواسون غیر المتجانسة (IRP) المتطلبات. ولمعالجة هذا الأمر، تستهدف الدراسة استخدام عملية رايلي العكسية
(NHPP) كنموذج لفشل النظام يتماشى مع استخدام النموذج العشوائي للنظام. ولتحسین دقة تقدير المعلمات، يتم دراسة طريقتي ،

الناتجة عن صعوبة التعامل مع والطريقة البايزية، حیث يتم البحث في حل المشكلات التحلیلية   (MLE) التقدير بالاحتمالية العظمى
التوزيعات اللاحقة باستخدام تقريبات لابلاس. وتُظهر التجارب العددیة التي أُجريت على أحجام عینات مختلفة، والمُقيمة باستخدام 

 .MLE ، يتفوق علىBayes II ، أن المُقدر البايزي، وخاصة باستخدام التوزيع المسبق(RMSE) متوسط الجذر التربيعي للخطأ
وأخیرًا، تم تأكید فاعلية الأسالیب المقترحة باستخدام بيانات حقيقية عن حالات الفشل في محطة الموصل لتولید الطاقة الغازية، مما  
يُثبت كفاءة الطريقة البايزية في نمذجة أنظمة الموثوقية المترابطة في التطبیق العملي، وبشكل أدق في السياقات التي تعاني من شُح  

 .تالبيانا

ر البايزي؛ المحاكاة الكلمات المفتاحية:  .عملية رايلي العكسية؛ اختبار التجانس؛ المُقد ِّ
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