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 Bell regression model has become a very versatile model that replaced the conventional 

count data models and helps to resolve the problem of over-dispersion where the 

variance of data points surpasses the mean. Nevertheless, in practice, the classical 

maximum likelihood estimators (MLE) of the parameters of a model are frequently 

affected by multicollinearity among the explanatory variables, and they yield highly 

unstable estimates and inflated variances. To address these difficulties, estimation 

methods developed to estimate shrinkage, such as ridge or Liu estimators have been 

applied to the Bell regression model. In the subject review, new developments in 

estimators of shrinkage of Bell regression models are proportionate in discussing their 

theoretical background in knowledge, estimation process, and asymptotic 

characteristics. The results on Monte Carlo simulation studies always show that 

shrinkage estimators outweigh MLEs in that they minimize mean squared error and bias 

more than MLEs, especially in cases of multicollinearity. Both overall, estimation 

methods of shrinkage is a considerable improvement in Bell regression modeling that 

offers certainty and effectiveness of analysis of complicated counts information 

utilizing problematic distribution attributes. 
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1. Introduction   

As statistical modeling aids in describing the slope of the functionality between the variable of interest that is the 

response variable and the many explanatory variables, it is significant in most spheres of scientific studies. In the 

model, it is also assumed that the observations made in the dependent variable were independent and identically 

distributed. The assumption however might not have a lot of use in the real world especially in the usage of these 

technologies in day-to-day life. An example is that the response variable in the medical sciences is a variable where 

one can have a positive skew. It is therefore not quite sensible to utilize a linear regression model at all in some way. 

The GLM linear regression models are slowly creeping into other models to be a statistical modeling technique that 

can be used in both continuous and discrete dependent variable Algamal, Lukman, Golam, Taofik and Mathematics ( 

2023).  

Multicollinearity is a problem regarding econometric modeling. It reveals that there is a strong relationship between 

the explanatory variables. The covariance matrix of ML estimator is infamous to be ill-conditioned in case of severe 

multicollinearity. Among the adverse results of such a situation, the variance of regression estimates is overestimated. 

The significance and the size of coefficients are altered as a consequence. Most of the classical steps made in resolving 

this problem include deleting correlated variables, gathering additional data or re-specifying the model. 

In order to overcome multicollinearity problem in the linear regression model, one different alternative method to 

MLE is the ridge, Liu, Liu type and other estimators based on the other authors  Hoerl and Kennard, (1970),  K. 

https://stats.uomosul.edu.iq/index.php/stats/article/view/54082
http://creativecommons.org/licenses/by/4.0/
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Liu(1993). These estimators have been extended to the GLMs (Akram, Amin, and Amanullah( 2020), B. M. G. 

Kibria (2003) G. Kibria, Månsson and Shukur (2012),  Kurtoğlu and Özkale( 2016),  Mackinnon and 

Puterman(1989),  Månsson and Shukur (2011),  Nyquist(1991)  Segerstedt(1992), Shamany, Alobaidi and  Algamal 

(2019). 

 
2. Bell regression model 

Count data modeling Statistical methods intended to model dependent variables which are counts, i.e. non-negative 

integers indicating the number of times that an event has happened in a fixed time or space. The data are commonly 

observed in disciplines like economics, health sciences, ecology and social sciences, where the number of visits to a 

hospital, accidents, amount of purchase by customers are among results which are observed. The models of count 

data are usually formulated in the framework of generalized linear model (GLM), which is estimated by maximum 

likelihood. In them, they can add covariates to model variability in counts, can fit one or more offset terms to reflect 

the exposure time or population at risk. 

Let  (𝑤𝑖 , 𝑧𝑖),  𝑖 = 1,2, . . . , 𝑛is independent observed data with the predictor vector  𝑧𝑖 ∈ 𝑅𝑝+1𝑤𝑖 ∈ 𝑅 belongs to 

the Bell distribution. Then the pdf of  
i

w  is 

  

𝑃(𝑊 = 𝑤) =
𝛼𝑤𝑒−𝑒𝛼+1𝐵𝑤

𝑤!
,   𝑤 = 0,1,2, . . .,                                                                                     (1) 

where 𝛼 > 0 and 𝐵𝑤 = (1/𝑒) ∑ (𝑑𝑤/𝑑!)
∞

𝑑=0
 is the Bell numbers (Eric T Bell (1934), Eric Temple Bell(1934), 

Castellares, Ferrari and Lemonte(2018)). Then: 

 𝐸(𝑤) = 𝛼𝑒𝛼,    (2) 

 𝑉𝑎𝑟(𝑤) = 𝛼(1 + 𝛼)𝑒𝛼. (3) 

Assuming 𝛺 = 𝛼𝑒𝛼 and 𝛼 = 𝑄∘(𝛺) where 𝑄∘(. ) is the Lambert function. Eq. (1) can be as 

 𝑃(𝑊 = 𝑤) = exp(1 − 𝑒𝑄∘(𝛺))
𝑄∘(𝛺)𝑤𝐵𝑤

𝑤!
,   𝑤 = 0,1,2, . . .,     (4) 

The linear function is stated as 𝜂𝑖 = 𝛽0 + ∑ 𝑧𝑖𝑗𝛽𝑗 =  
𝑝

𝑗=1
𝑧𝑖

𝑇𝛽 with 𝑧𝑖
𝑇 = (1, 𝑧𝑖2, 𝑧𝑖3, . . . , 𝑧𝑖𝑝) and 𝛽 =

(𝛽0, 𝛽1, . . . , 𝛽𝑝)𝑇. The link function is as 𝜇𝑖 = 𝑔−1(𝜂𝑖) = 𝑔−1(𝑧𝑖
𝑇𝛽). The Bell regression model (BRM) can be 

modeled by assuming 𝛺𝑖 = exp(𝑧𝑖
𝑇𝛽)  exp(exp(𝑧𝑖

𝑇𝛽)) and log𝜓𝑖 = 𝑥𝑖
𝑇𝛽  exp(𝑥𝑖

𝑇𝛽) as   

𝑤𝑖 ∼ Bell(𝑄∘(𝛺𝑖)) . The log-likelihood is defined  

 ℓ(𝛽, 𝛺) = ∑ 𝑤𝑖log (exp(𝑧𝑖
𝑇𝛽)exp (𝑒(𝑧𝑖

𝑇𝛽)))
𝑛

𝑖=1
+ ∑ (1 − 𝑒𝑒

(𝑧𝑖
𝑇𝛽)  𝑒𝑒

(𝑧𝑖
𝑇𝛽)

)𝑛
𝑖=1

    + log𝐵𝑤 − log(∏ 𝑤𝑖!𝑛
𝑖=1 ).

                 (5) 

Then, the MLE is  

 𝛽̂MLE = (𝑍𝑇𝑀̂𝑍)−1𝑍𝑇𝑀̂𝑢̂,                                                                                                                       (6) 

where 𝑀̂ = diag[(𝜕𝜇𝑖/𝜕𝜂𝑖)2/𝑉(𝑤𝑖)] and 𝑢̂ is a vector where ith element equals to 𝑢̂𝑖 = log𝛺̂𝑖 + [(𝑤𝑖 −

𝜇̂𝑖)/√var(𝛺̂𝑖)].  

In the presence of multicollinearity, the near singularity of ˆT
Z MZ  makes the estimation unstable and enlarges the 

variance G. Liu and Piantadosi (2016). The ridge estimator (RE)  Hoerl & Kennard ( 1970), Liu estimator (LE) K. 

Liu (1993) are alternative to the MLE, when multicollinearity exists. RR and LE have been suggested in Bell 

regression model by Amin, Akram, and Majid (2021) and Majid, Amin, and Akram (2021), respectively.  
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3. Shrinkage Estimators 

3.1 RE Estimator 

Månsson and Shukur (2011) proposed the RE as 

 𝛽̂𝑅𝐸 = (𝑍𝑇𝑀̂𝑍 + 𝑘𝐼)−1𝑍𝑇𝑀̂𝑢̂,  (7) 

where 𝑘 ≥ 0 (B. M. Golam Kibria, Månsson, & Shukur, 2015). 

 

3.2 Liu Estimator 

The Liu estimator is a biased regression procedure, which is used when it remains that there may be a higher inter-

correlation in predictor variables in a linear model that presents multicollinearity. Proposed by Liu (1993), it 

conforms a middle ground between the OLS estimator and ridge regression as a means to balance bias and variance 

to offer more stable estimations. The Liu estimator (LE) is defined as  

 𝛽̂𝐿𝐸 = (𝑍𝑇𝑀̂𝑍 + 𝐼)−1(𝑍𝑇𝑀̂𝑍 + 𝑑 𝐼)𝛽̂𝑀𝐿𝐸,  (8) 

where 0 < 𝑑 < 1.  Regardless of d value, the MSE of the 𝛽̂𝐿𝐸is smaller than that of 𝛽̂𝑀𝐿𝐸because the MSE of  𝛽̂𝐿𝐸 

B. M. Golam Kibria et al.(2015). 

 

 

3.3 Liu-type Estimator 

Introduced by Kejian Liu (2003), the Liu-type estimator is a biased estimator of the regression, which tries to solve 

problems of multicollinearity in linear and generalized regression. It generalizes both OLS and ridge regressions by 

adding one or two shrinkage (biasing) parameters that allow one to manage the bias-variance trade-off when 

estimating the parameters. The Liu-type estimator (LT) is defined as  

 𝛽̂𝐿𝑇 = (𝑍𝑇𝑀̂𝑍 + 𝑘 𝐼)−1(𝑍𝑇𝑀̂𝑍 − 𝑑 𝐼)𝛽̂𝑀𝐿𝐸 ,  (9) 

where −∞ < 𝑑 < ∞ and 𝑘 ≥ 0  (Alheety and Golam Kibria( 2013) , B. M. Golam Kibria and Saleh (2004) 

,Norouzirad and Arashi (2017), Wu (2014, 2016).  

 

3.4 Two-parameter Estimator 

Asar and Genç (2017) and Huang and Yang (2014) proposed the two-parameter estimator (TP) is defined as: 

 𝛽̂𝑇𝑃 = (𝑍𝑇𝑀̂𝑍 + 𝑘 𝐼)−1(𝑍𝑇𝑀̂𝑍 + 𝑘 𝑑 𝐼)𝛽̂𝑀𝐿𝐸.  (10) 

The 𝛽̂𝑇𝑃 is a combination of two different estimators generalized RE and generalized LE. 

 

 

4. Simulation Study 

In this part we will simulate a pair of collinear explanatory variables and a response variable w which is bell 

distributed. The following variables are provided as the explanatory ones according to the research of Kibria (2003) 

and Lukman et al. (2019a, b): 

𝑧𝑖𝑗 = √(1 − 𝑟2)𝑥𝑖𝑗 + 𝑟𝑥𝑖(𝑗+1), 𝑖 = 1, … , 𝑛; 𝑗 = 1, … 𝑝                                                                     (11) 

where 𝑥𝑖𝑗 are independent standard normal pseudo-random numbers and 𝜌2 denotes the correlation between the 

explanatory variables such that 𝑟 =  0.9, 0.95 and 0.99. We assumed that 𝑤𝑖~𝑏𝑒𝑙𝑙(𝑄𝑜(𝜇𝑖)), where 

 log (𝜇𝑖) = 𝜂𝑖 = 𝛽1𝑧𝑖1 + 𝛽2𝑧𝑖2 + ⋯ + 𝛽𝑝𝑧𝑖𝑝                                                                      (12) 

Then n=30, 50, 100, and 200 while p is taken to be 4, 8 and 12. The real values of   are chosen such that  

∑ 𝛽̂𝑖
2𝑝

𝑖=1
= 1, Kibria and Lukman (2020), Lukman, Dawoud, Kibria, Algamal and Aladeitan (2021)). The MSE was 

employed to evaluate the estimators’ performance.  

𝑀𝑆𝐸(𝛽∗) =
1

1000
∑ (𝛽𝑖𝑗

∗ − 𝛽𝑖)′(𝛽𝑖𝑗
∗ − 𝛽𝑖)

100

𝑗=1
                                                                            (13) 

where 𝛽𝑖𝑗
∗  is the estimator and 𝛽𝑖  is the parameter. 

The Tables 1-4 present the MSE values for different estimators: MLE, RR, LE, LT, and TP across varying numbers 

of predictors (p = 4, 8, 12) and correlation levels (r = 0.90, 0.95, 0.99). MSE measures the average squared difference 

between estimated and true parameter values, combining both bias and variance; thus, lower MSE indicates better 

estimator performance. For each fixed number of predictors, as the correlation among predictors increases from 0.90 

to 0.99, the MSE for all estimators generally increases. This reflects the known difficulty in parameter estimation 

under stronger multicollinearity, which inflates variance and estimation error. 
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For a fixed correlation, increasing the number of predictors from 4 to 12 tends to increase the MSE for all estimators, 

indicating that higher model complexity challenges estimation accuracy. The MLE consistently exhibits the highest 

MSE values across all scenarios, indicating it is the least efficient estimator under multicollinearity and high-

dimensional settings. 

Further, RR improves upon MLE by shrinking coefficients, thus reducing variance and lowering MSE. The LE 

further reduces MSE compared to RR, demonstrating better bias-variance trade-off. In addition, The LT shows even 

lower MSE than LE, suggesting enhanced performance in handling multicollinearity.  

The TP estimator achieves the lowest MSE values in all cases, indicating it has the best estimation accuracy among 

the compared methods. For example, at p=12 and r=0.99, MSE drops from 13.288 (MLE) to 4.9361 (TP), a 

substantial reduction demonstrating the effectiveness of shrinkage and specialized estimators in complex settings. 

 

Table 1: Values of the MSE when n=30 

 

p r MLE RR LE LT TP 

4 0.90 6.172 5.819 5.741 5.332 5.2779 

 0.95 7.269 6.304 6.03 5.946 5.8918 

 0.99 8.312 6.821 6.088 6.047 5.9929 

8 0.90 6.289 5.649 5.421 5.225 5.1709 

 0.95 8.334 6.48 5.924 5.775 5.7207 

 0.99 9.266 7.205 6.431 5.582 5.5279 

12 0.90 7.526 5.277 5.102 4.926 4.8712 

 0.95 10.749 6.628 5.911 5.022 4.9653 

 0.99 13.288 6.955 5.727 4.991 4.9361 

 

Table 2: Values of the MSE when n=50 

p    MLE RR LE LT TP 

4 0.90 6.136 5.783 5.705 5.296 5.2419 

 0.95 7.233 6.268 5.994 5.91 5.8558 

 0.99 8.276 6.785 6.052 6.011 5.9569 

8 0.90 6.253 5.613 5.385 5.189 5.1349 

 0.95 8.298 6.444 5.888 5.739 5.6847 

 0.99 9.23 7.169 6.395 5.546 5.4919 

12 0.90 7.49 5.241 5.066 4.89 4.8352 

 0.95 10.713 6.592 5.875 4.986 4.9293 

 0.99 13.252 6.919 5.691 4.955 4.9001 

 

Table 3: Values of the MSE when n=100 

p    MLE RR LE LT TP 

4 0.90 6.008 5.655 5.577 5.168 5.1139 

 0.95 7.105 6.14 5.866 5.782 5.7278 

 0.99 8.148 6.657 5.924 5.883 5.8289 

8 0.90 6.125 5.485 5.257 5.061 5.0069 

 0.95 8.17 6.316 5.76 5.611 5.5567 

 0.99 9.102 7.041 6.267 5.418 5.3639 

12 0.90 7.362 5.113 4.938 4.762 4.7072 

 0.95 10.585 6.464 5.747 4.858 4.8013 

 0.99 13.124 6.791 5.563 4.827 4.7721 
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Table 4: Values of the MSE when n=200 

p    MLE RR LE LT TP 

4 0.90 5.66 5.307 5.229 4.82 4.7659 

 0.95 6.757 5.792 5.518 5.434 5.3798 

 0.99 7.8 6.309 5.576 5.535 5.4809 

8 0.90 5.777 5.137 4.909 4.713 4.6589 

 0.95 7.822 5.968 5.412 5.263 5.2087 

 0.99 8.754 6.693 5.919 5.07 5.0159 

12 0.90 7.014 4.765 4.59 4.414 4.3592 

 0.95 10.237 6.116 5.399 4.51 4.4533 

 0.99 12.776 6.443 5.215 4.479 4.4241 

 

5. Conclusion 

The BRM is a statistical method that can be used to model count-based data; explained that it is used to model 

overdispersion data type where the variance is more than the average. The BRM presupposes that the response is 

Bell-distributed, which is a discrete distribution with probability mass function dependent on the Bell and Lambert 

functions. This paper is a thorough literature review of biased estimators in bell regression models where there is 

multicollinearity. The two-parameter estimator is superior to MSE of the MLE, RR, LT, and LE in simulating. Lastly, 

in the event of multicollinearity in the beta regression model, two parameter estimators ought to be employed. 
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 التقديرات المقلصة في انموذج انحدار بيل: مراجعة مقال
 

 حذيفة حازم طه 
 العراق , الموصل كلية علوم الحاسوب والرياضيات جامعة الموصل، بحوث العمليات والتقنيات الذكائية،قسم 

نموذجًا متعدد الاستخدامات حلّ محل نماذج بيانات العد التقليدية ويساعد على حل مشكلة التشتت المفرط حيث يتجاوز تباين  لقد أصبح نموذج انحدار بيل  الخلاصة:  
التفسيرية، لمعلمات النموذج بتعدد التباينات بين المتغيرات   (MLE) نقاط البيانات المتوسط. ومع ذلك، في الممارسة العملية، غالبًا ما تتأثر مقدرات الامكان الاعظم

مثل مقدرات التلال أو مقدرات   وتنتج تقديرات غير مستقرة للغاية وتباينات متضخمة. ولمعالجة هذه الصعوبات، تم تطبيق طرق التقدير التي تم تطويرها لتقدير الانكماش،
نماذج انحدار بيل مع مناقشة خلفيتها النظرية في المعرفة   ليو على نموذج انحدار بيل. في استعراض هذا الموضوع، تتناسب التطورات الجديدة في تقديرات انكماش

المتغيرة من حيث أنها تقلل من    وعملية التقدير والخصائص التقاربية. تُظهر نتائج دراسات محاكاة مونت كارلو للمحاكاة دائمًا أن مقدرات الانكماش تتفوق على المقدرات
متغيرة خاصة في حالات تعدد التماثلات. وبشكل عام، تعد طرق تقدير الانكماش تحسنًا كبيرًا في نمذجة انحدار بيل  متوسط الخطأ المربع والتحيز أكثر من المقدرات ال

 .التي توفر اليقين والفعالية في تحليل معلومات التعداد المعقدة باستخدام سمات التوزيع الإشكالية
 .انكماش ;مقدر ;الجرس انحدار ;انحدار الكلمات المفتاحية:


