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1. Introduction
As statistical modeling aids in describing the slope of the functionality between the variable of interest that is the
response variable and the many explanatory variables, it is significant in most spheres of scientific studies. In the
model, it is also assumed that the observations made in the dependent variable were independent and identically
distributed. The assumption however might not have a lot of use in the real world especially in the usage of these
technologies in day-to-day life. An example is that the response variable in the medical sciences is a variable where
one can have a positive skew. It is therefore not quite sensible to utilize a linear regression model at all in some way.
The GLM linear regression models are slowly creeping into other models to be a statistical modeling technique that
can be used in both continuous and discrete dependent variable Algamal, Lukman, Golam, Taofik and Mathematics (
2023).
Multicollinearity is a problem regarding econometric modeling. It reveals that there is a strong relationship between
the explanatory variables. The covariance matrix of ML estimator is infamous to be ill-conditioned in case of severe
multicollinearity. Among the adverse results of such a situation, the variance of regression estimates is overestimated.
The significance and the size of coefficients are altered as a consequence. Most of the classical steps made in resolving
this problem include deleting correlated variables, gathering additional data or re-specifying the model.
In order to overcome multicollinearity problem in the linear regression model, one different alternative method to
MLE is the ridge, Liu, Liu type and other estimators based on the other authors Hoerl and Kennard, (1970), K.
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Liu(1993). These estimators have been extended to the GLMs (Akram, Amin, and Amanullah( 2020), B. M. G.
Kibria (2003) G. Kibria, Mansson and Shukur (2012), Kurtoglu and Ozkale( 2016), Mackinnon and
Puterman(1989), Mansson and Shukur (2011), Nyquist(1991) Segerstedt(1992), Shamany, Alobaidi and Algamal
(2019).

2. Bell regression model

Count data modeling Statistical methods intended to model dependent variables which are counts, i.e. non-negative
integers indicating the number of times that an event has happened in a fixed time or space. The data are commonly
observed in disciplines like economics, health sciences, ecology and social sciences, where the number of visits to a
hospital, accidents, amount of purchase by customers are among results which are observed. The models of count
data are usually formulated in the framework of generalized linear model (GLM), which is estimated by maximum
likelihood. In them, they can add covariates to model variability in counts, can fit one or more offset terms to reflect
the exposure time or population at risk.

Let (w;, z), i = 1,2,...,nis independent observed data with the predictor vector z; € RP*1w; € R belongs to

the Bell distribution. Then the pdf of w, is

awe—ezx+1BW

P(W=w) = , w=012,... (1)

w!

where @ > 0 and B, = (1/e) Z:J:O(dw/d!) is the Bell numbers (Eric T Bell (1934), Eric Temple Bell(1934),

Castellares, Ferrari and Lemonte(2018)). Then:
E(w) = ae%, 2

Var(w) = a(1 + a)e®. 3)

Assuming 2 = ae® and a = Q,(£2) where Q.(.) is the Lambert function. Eqg. (1) can be as
P(W =w) =exp(1— eQ"m))%. w=012,.., 4

The linear function is stated as n; = 8, + Zj.':lz”[i’j = z/B with z] = (1,2, 23,...,2;) and B =
(Bos B -+ Bp)T. The link function is as w; = g7*(n;) = g~*(z{ B). The Bell regression model (BRM) can be
modeled by assuming 2; = exp(z] B) exp(exp(ziTB)) and logy; = xT B exp(x]B) as
w; ~ Bell(Q.(£2;)) . The log-likelihood is defined

" T e(ZiT )
(B, 0) = Zi_1 w;log <exp(ziTﬂ)exp (e(ZiTﬁ))) +Ym (1 - ee(zi B)e g

+logB,, — log(TT=, w;1).

) (5)

Then, the MLE is

Bure = (Z"MZ)~*Z" M, (6)

where M = diag[(du;/dn;)?/V(w;)] and i is a vector where i" element equals to ; = log; + [(w; —
i)/ var(@2;)].

In the presence of multicollinearity, the near singularity of Z" MZ makes the estimation unstable and enlarges the
variance G. Liu and Piantadosi (2016). The ridge estimator (RE) Hoerl & Kennard ( 1970), Liu estimator (LE) K.
Liu (1993) are alternative to the MLE, when multicollinearity exists. RR and LE have been suggested in Bell
regression model by Amin, Akram, and Majid (2021) and Majid, Amin, and Akram (2021), respectively.
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3. Shrinkage Estimators
3.1 RE Estimator
Mansson and Shukur (2011) proposed the RE as
Bre = (ZTMZ + kI)~1ZT M1, (7
where k > 0 (B. M. Golam Kibria, Mansson, & Shukur, 2015).

3.2 Liu Estimator
The Liu estimator is a biased regression procedure, which is used when it remains that there may be a higher inter-
correlation in predictor variables in a linear model that presents multicollinearity. Proposed by Liu (1993), it
conforms a middle ground between the OLS estimator and ridge regression as a means to balance bias and variance
to offer more stable estimations. The Liu estimator (LE) is defined as

Bue = (Z"MZ +1)"H(Z"MZ + d 1)y, )
where 0 < d < 1. Regardless of d value, the MSE of the 3, zis smaller than that of §,,; zbecause the MSE of f,;
B. M. Golam Kibria et al.(2015).

3.3 Liu-type Estimator
Introduced by Kejian Liu (2003), the Liu-type estimator is a biased estimator of the regression, which tries to solve
problems of multicollinearity in linear and generalized regression. It generalizes both OLS and ridge regressions by
adding one or two shrinkage (biasing) parameters that allow one to manage the bias-variance trade-off when
estimating the parameters. The Liu-type estimator (LT) is defined as

Pur = (Z"™MZ + kD)™ (Z"MZ — d DB, 9)
where —co < d < oo and k=0 (Alheety and Golam Kibria( 2013) , B. M. Golam Kibria and Saleh (2004)
,Norouzirad and Arashi (2017), Wu (2014, 2016).

3.4 Two-parameter Estimator

Asar and Geng (2017) and Huang and Yang (2014) proposed the two-parameter estimator (TP) is defined as:
Brp = (Z™MZ +kD)YW(Z"MZ + kd )fyLE. (10)

The Brp is a combination of two different estimators generalized RE and generalized LE.

4. Simulation Study

In this part we will simulate a pair of collinear explanatory variables and a response variable w which is bell
distributed. The following variables are provided as the explanatory ones according to the research of Kibria (2003)
and Lukman et al. (2019a, b):

zij = (A = 1r3)x; + x4yl =1, ., =1,..p (11
where x;; are independent standard normal pseudo-random numbers and p? denotes the correlation between the
explanatory variables such that r = 0.9,0.95 and 0.99. We assumed that wi~bell(Qo (ui)), where
log (1) =0 = Brzix + Bozip + -+ + BpZip (12)
Then n=30, 50, 100, and 200 while p is taken to be 4, 8 and 12. The real values of S are chosen such that
le B? = 1, Kibria and Lukman (2020), Lukman, Dawoud, Kibria, Algamal and Aladeitan (2021)). The MSE was

employed to evaluate the estimators’ performance.
100
1

MSEB") = 1555 jzl(ﬁi} =B (Bij — B (13)

where f;; is the estimator and f; is the parameter.

The Tables 1-4 present the MSE values for different estimators: MLE, RR, LE, LT, and TP across varying humbers
of predictors (p = 4, 8, 12) and correlation levels (r = 0.90, 0.95, 0.99). MSE measures the average squared difference
between estimated and true parameter values, combining both bias and variance; thus, lower MSE indicates better
estimator performance. For each fixed number of predictors, as the correlation among predictors increases from 0.90
to 0.99, the MSE for all estimators generally increases. This reflects the known difficulty in parameter estimation
under stronger multicollinearity, which inflates variance and estimation error.
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For a fixed correlation, increasing the number of predictors from 4 to 12 tends to increase the MSE for all estimators,
indicating that higher model complexity challenges estimation accuracy. The MLE consistently exhibits the highest
MSE values across all scenarios, indicating it is the least efficient estimator under multicollinearity and high-

dimensional settings.

Further, RR improves upon MLE by shrinking coefficients, thus reducing variance and lowering MSE. The LE
further reduces MSE compared to RR, demonstrating better bias-variance trade-off. In addition, The LT shows even

lower MSE than LE, suggesting enhanced performance in handling multicollinearity.

The TP estimator achieves the lowest MSE values in all cases, indicating it has the best estimation accuracy among
the compared methods. For example, at p=12 and r=0.99, MSE drops from 13.288 (MLE) to 4.9361 (TP), a
substantial reduction demonstrating the effectiveness of shrinkage and specialized estimators in complex settings.

Table 1: Values of the MSE when n=30

p r MLE RR LE LT TP

4 0.90 6.172 5.819 5.741 5.332 5.2779
0.95 7.269 6.304 6.03 5.946 5.8918
0.99 8.312 6.821 6.088 6.047 5.9929

8 0.90 6.289 5.649 5.421 5.225 5.1709
0.95 8.334 6.48 5.924 5.775 5.7207
0.99 9.266 7.205 6.431 5.582 5.5279

12 0.90 7.526 5.277 5.102 4.926 4.8712
0.95 10.749 6.628 5.911 5.022 4.9653
0.99 13.288 6.955 5.727 4,991 4.9361

Table 2: Values of the MSE when n=50

p p MLE RR LE LT TP

4 0.90 6.136 5.783 5.705 5.296 5.2419
0.95 7.233 6.268 5.994 5.91 5.8558
0.99 8.276 6.785 6.052 6.011 5.9569

8 0.90 6.253 5.613 5.385 5.189 5.1349
0.95 8.298 6.444 5.888 5.739 5.6847
0.99 9.23 7.169 6.395 5.546 5.4919

12 0.90 7.49 5.241 5.066 4.89 4.8352
0.95 10.713 6.592 5.875 4.986 4.9293
0.99 13.252 6.919 5.691 4.955 4.9001

Table 3: Values of the MSE when n=100

p P MLE RR LE LT TP

4 0.90 6.008 5.655 5.577 5.168 5.1139
0.95 7.105 6.14 5.866 5.782 5.7278
0.99 8.148 6.657 5.924 5.883 5.8289

8 0.90 6.125 5.485 5.257 5.061 5.0069
0.95 8.17 6.316 5.76 5.611 5.5567
0.99 9.102 7.041 6.267 5.418 5.3639

12 0.90 7.362 5.113 4,938 4.762 4.7072
0.95 10.585 6.464 5.747 4.858 4.8013
0.99 13.124 6.791 5.563 4.827 47721
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Table 4: Values of the MSE when n=200

p P MLE RR LE LT TP

4 0.90 5.66 5.307 5.229 4.82 4.7659
0.95 6.757 5.792 5.518 5.434 5.3798
0.99 7.8 6.309 5.576 5.535 5.4809

8 0.90 5777 5.137 4.909 4.713 4.6589
0.95 7.822 5.968 5.412 5.263 5.2087
0.99 8.754 6.693 5.919 5.07 5.0159

12 0.90 7.014 4.765 4.59 4.414 4.3592
0.95 10.237 6.116 5.399 451 4.4533
0.99 12.776 6.443 5.215 4.479 4.4241

5. Conclusion

The BRM is a statistical method that can be used to model count-based data; explained that it is used to model
overdispersion data type where the variance is more than the average. The BRM presupposes that the response is
Bell-distributed, which is a discrete distribution with probability mass function dependent on the Bell and Lambert
functions. This paper is a thorough literature review of biased estimators in bell regression models where there is
multicollinearity. The two-parameter estimator is superior to MSE of the MLE, RR, LT, and LE in simulating. Lastly,
in the event of multicollinearity in the beta regression model, two parameter estimators ought to be employed.
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