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 On a single machine, each of n jobs must be processed continuously. At time zero, every 

job is ready for processing. The tasks to process a sequence that minimizes the total sum 

of competition times plus the sum of tardiness (∑𝑖∈𝑁  𝑐𝑖 + ∑𝑖∈𝑁𝑇𝑖) . This bi-criteria 

problem is NP-hard because of the second one. We provide a theorem that demonstrates 

a relationship between the optimal solution, lower bounds, and the number of efficient 

solutions. The case is that the theorem works for NP-hard problems, whereas in previous 

works the focus was on P-hard problems. The theorem limits the lower bound's range, 

which is crucial for determining the best answer. Additionally, the theorem allows for 

discovering new lower bounds by opening algebraic procedures and concepts.  
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1. Introduction 

Over the past few decades, multi-objective optimization has gained importance as a study area because it has been shown to 

be a simple and successful method for solving practical optimization problems (Manal and Faez, 2020). Multi-objective 

optimization's conflict restricts the scheduling direction of workable solutions, and current algorithms struggle to balance 

parameters or fail to identify the best solution for the problem (Liu et al., 2020, 2023). There are many papers addressing 

functions with many objectives  in scheduling (Lauff and Werner, 2004). (Qader et al. 2023) focused of some structures on 

multi-objective fuzzy scheduling problems. (Salh and Ramadan, 2022) introduced three algorithms for bi-objective problems 

in hierarchical and simultaneous cases. Also, many studies found for flow shop problems. (Abdulkareem Zeidan, 2013) 

proposed genetic algorithm to finding the optimal schedule with minimum makespan. The following the issue class is taken 

into consideration: 𝑛 jobs 1,2, … , 𝑛 must be handled by one machine (m=1). which becomes accessible at time zero, requires 

processing time that is positive 𝑝𝑖 (Manal and Faez, 2022). A processing time is assigned to each job  𝑝𝑖 and a due date 𝑑𝑖, 

are detailed. With a timetable, we can calculate the tardiness The completion time 𝑐𝑖  for every job 𝑖 , and 𝑇𝑖 =
max {𝑐𝑖 − 𝑑𝑖 , 0} and 𝑇max = max {𝑇𝑖}. In this paper the sum of completion times is a multi-objective function that we 

examine.∑𝑖∈𝑁  𝑐𝑖 added with the sum of tardiness ∑𝑖∈𝑁𝑇𝑖  on single machine. A theorem is presented to find a range of lower 

bounds in such cases when one of the criteria is NP-hard namely ∑𝑖∈𝑁𝑇𝑖 (Du and Leung, 1990). 
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2. Related Works 

 

Nowadays, two to three optimization objectives are taken into consideration in the majority of multi-objective optimization 

situations. Scholars mostly employ, heuristic algorithms, hybrid algorithms, etc. to address these many issues. The multi-

objective under consideration is the sum of completion times ∑𝑖∈𝑁  𝑐𝑖 added with the sum of tardiness ∑𝑖∈𝑁𝑇𝑖 on single 

machine. There are two directions of research regarding multi-criteria.  

First, researchers using branch and bound with some new lower bounds for multi-objective problems.  (Abdullah, 2010) 

presented algorithms to solve primary and secondary criteria. (Abdul-Razaq and Ali, 2015) used branch and bound algorithm 

to minimize three objectives simultaneously. (Chachan, and Hameed, 2019) applied four upper bounds to solve four criteria 

by branch and bound algorithm. (Chachan and Ali, 2020) discussed five criteria problem, and used branch and bound 

algorithm.  (Ibrahim et al., 2022) reported two methods to solve five criteria problems namely branch and bound, and local 

methods. Lastly, (Zhao, Q., Yuan,2024) showed an interesting structure of lexicographical type of problem, they studied the 

total tardiness as primary criterion where maximum lateness, weighted number of tardy jobs, and the total weighted tardiness 

were secondary criteria. 

Second, some theories were presented to restrict lower bounds for multi-objective functions. These techniques help the 

decision makers to choose the best solution among a set of comprised solutions. (Ramadhan and Jabbar,2006) formulated a 

new theorem for total completion times plus the maximum tardiness.   

To restrict the range of lower bounds. (Ramadan, 2011) generalized the idea to sum of weighted completion times added 

with maximum weighted tardiness. (Amin and Ramadan, 2021) studied the sum of maximum earliness and maximum 

tardiness by the sum technique. (Mahmod et al., 2022) applied the theorem for the total square completion time and 

maximizing earliness. In fuzzy environment with triangular fuzzy numbers, (Ramadan, 2021, 2023) extended the idea to the 

total fuzzy completion time and maximum fuzzy earliness problem, and defined a new definition which is m-strongly positive 

fuzzy numbers also, minimizes total fuzzy completion time and maximum fuzzy tardiness. Forn tri-criteria, (Hassan et al., 

2022) generalized the idea to three-criteria problem of minimize the sum of total completion time, maximum earliness and 

maximum tardiness using efficient solutions. Also, (Sharif and Ramadan, 2023) studied three criteria of maximum earliness, 

maximum tardiness, and maximum late work simultaneously    

Focusing to these criteria, the criterion is solvable in polynomial times (P-hard). That is why the theorem works effectively. 

In this paper, and for the first time we introduce the same idea for an NP-hard criterion ∑𝑖∈𝑁𝑇𝑖 which is one of the difficult 

criteria in scheduling (Zhao, Q., Yuan,2024). 

 

 

3. Main Problem 

 

Since ∑𝑖∈𝑁𝑇𝑖 is NP-hard problem, the theorem fails to determine the range of lower bound. So, we present a condition on 

problems that related to the main problem. 
 

4. Job- Scheduling Concepts 

 

Start with some important notations of scheduling problems. Here, we only focus on the used notations on single machine. 

Jobs i, (i = 1, …, 𝑛) have (Manal and Faez, 2020): 

N =the set {1,2,3, … , n}. 

Pi = processing time for job i . 

di = due date for job i . 

Ci = completion time for job i. 

Li = lateness of job i, 𝐿𝑖 = Ci − 𝑑𝑖 

Ti = tardiness of job i, 𝑇𝑖 = max {𝐿𝑖 , 0} 

EDD- rule: (early due date) The order of the jobs is nondecreasing of di 

SPT-rule: (short processing time) The order of the jobs is nondecreasing of pi. 

LB: ( lower bound ) It is below or equal to the optimal value. 

UB: ( upper bound ) It exceeds or is equivalent to the optimal value. 

Opt.: optimal solution. 

 

5.  Relation between Optimal and Efficient Solutions: 

 

Our objective function is 
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                                  ∑𝑖∈𝑁  𝐶𝑖+∑𝑖∈𝑁𝑇𝑖.                                                                                                                          (1)      

                                         

Before giving the relationship between efficient solutions and the optimum value, or LB we define the following  

LB = ∑𝑖∈𝑁  𝐶𝑖(SPT) +    𝑇max (𝑜𝑝𝑡. ) 

UB = ∑𝑖∈𝑁  𝐶𝑖(SPT) +  ∑𝑖∈𝑁𝑇𝑖 (SPT)    

 

Theorem: 

A non-negative integer r exists such that  𝐿𝐵 + 𝑟 = optimal value, r ∈ [N1 − 1, 𝑁2
∗ + 1] iff 

∑ ∑ 𝑁𝑖
𝑘−1

𝑖=2
𝑖>𝑗+1

𝑘−1
𝑗=0 -(j+1) ≥ i-1-j, where  N1 = number of efficient solutions of (1), 𝑁2

∗ = ∑ 𝑇𝑖 (𝑜𝑝𝑡. )𝑖∈𝑁 − 𝑇max (𝑜𝑝𝑡. ). 

 

Proof: 

Since 𝐿𝐵 ≤ optimal value, Thus, a non-negative integer r exists such that LB + r = optimal value satisfies the theorem's first 

component. It is still to be proven that r ∈ [N1 − 1, 𝑁2
∗ + 1] or to show N1 − 1 ≤ 𝑟 ≤ 𝑁2

∗ + 1.  Now LB+r = optimal value, 

thus r =  optimal value-  LB ≤  UB - LB 

= ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) + ∑𝑖∈𝑁𝑇𝑖(𝑆𝑃𝑇) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max (𝑜𝑝𝑡. ) = ∑𝑖∈𝑁𝑇𝑖(𝑜𝑝𝑡. ) − 𝑇max (𝑜𝑝𝑡. ) = 𝑁2
∗ ≤ 𝑁2

∗ + 1 . Hence 

r ≤ 𝑁2
∗ + 1. We will prove N1 − 1 ≤ r  by induction on N1.  

If N1 = 1, In other words, SPT is the only efficient solution then 

r = optimal value −LB = ∑i∈N  ci(SPT) + ∑i∈NTi(opt. ) − ∑i∈N  ci(SPT) − Tmax (opt. ) = ∑i∈NTi(opt. ) − Tmax(opt. ) =
∑i∈NTi(SPT) − Tmax (SPT) ≥ 0. Thus N1 − 1 ≤ r ≤ 𝑁2

∗ + 1 .  
That is r ∈ [N1 − 1, 𝑁2

∗ + 1], Consequently, the theorem holds valid for N1 = 1. ∎ 

 

If N1 = 2, i.e, With SPT and σ, there are two efficient solutions., say. N1 = 2 implies that N1 − 1 = 1,  in case of SPT is 

optimal then, r = ∑i∈N  ci(SPT) + ∑i∈NTi(SPT) − ∑i∈N  ci(SPT) + Tmax (opt. ) = ∑i∈NTi(SPT) − Tmax (SPT) . The 

condition is it must be ≥ 1. 

 

In case of  𝜎  is optimal then 

r = ∑𝑖∈𝑁  𝑐𝑖(𝜎) + ∑𝑖∈𝑁𝑇𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max (𝜎) = ∑𝑖∈𝑁  𝑐𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) + ∑𝑖∈𝑁𝑇𝑖(𝜎) − 𝑇max (𝜎) . Since 

∑𝑖∈𝑁𝑐𝑖(𝜎)−∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) ≥ 1 . So, no condition on ∑𝑖∈𝑁𝑇𝑖(𝜎) − 𝑇max (𝜎)  is necessary. so r ∈ [N1 − 1, 𝑁2
∗ + 1]  Thus, 

theorem holds valid for N1 = 2. ∎ 

 

If N1 = 3, i.e., Three efficient solutions are available 𝑆𝑃𝑇, 𝜎, and 𝜎1, say. N1 = 3 →  N1 − 1 = 2,  

in case of  SPT is optimal, then r = ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) + ∑𝑖∈𝑁  𝑇𝑖(𝑜𝑝𝑡. ) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max (𝑜𝑝𝑡. ) =  ∑𝑖∈𝑁𝑇𝑖(𝑆𝑃𝑇) −
𝑇max (𝑆𝑃𝑇). The condition is it must be ≥ 2. In case of  𝜎 is optimal , then r = ∑𝑖∈𝑁  𝑐𝑖(𝜎) + ∑𝑖∈𝑁𝑇𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) −
𝑇max(𝜎) = ∑𝑖∈𝑁  𝑐𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) +  ∑𝑖∈𝑁𝑇𝑖(𝜎) − 𝑇max(𝜎). Since    ∑𝑖∈𝑁  𝑐𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) ≥ 1. So, the condition 

is it must be ≥ 1. Finally, in the case of  𝜎1 is optimal, then r = ∑𝑖∈𝑁  𝑐𝑖(𝜎1) + ∑𝑖∈𝑁𝑇𝑖(𝜎1) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max(𝜎1). Since 

∑𝑖∈𝑁  𝑐𝑖(𝜎1) + ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) ≥ 2 . So, no condition on ∑𝑖∈𝑁𝑇𝑖(𝜎1) −  𝑇max(𝜎1) . Hence N1 − 1 ≤ r ≤ 𝑁2
∗ + 1  or r ∈

[N1 −1, 𝑁2
∗ + 1]. Thus, the theorem is true for N1 = 3. ∎ 

 

If N1 = 4, i.e., there are four efficient solutions SPT, 𝜎 , 𝜎1, 𝜎2 say. N1 = 4 →  N1 − 1 = 3,  

In case of SPT is optimal, then r = ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) + ∑𝑖∈𝑁𝑇𝑖(𝑆𝑃𝑇) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max (𝑆𝑃𝑇) =  ∑𝑖∈𝑁𝑇𝑖(𝑆𝑃𝑇) −
𝑇max (𝑆𝑃𝑇). The condition is it must be ≥ 3. In case of  𝜎 is optimal, then r = ∑𝑖∈𝑁  𝑐𝑖(𝜎) + ∑𝑖∈𝑁𝑇𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) −
𝑇max(𝜎). Since ∑𝑖∈𝑁  𝑐𝑖(𝜎) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) ≥ 1. So, the condition is it must be ≥ 2. In case of  𝜎1 is optimal, then r =
∑𝑖∈𝑁  𝑐𝑖(𝜎1) + ∑𝑖∈𝑁𝑇𝑖(𝜎1) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max(𝜎1).  Since ∑𝑖∈𝑁  𝑐𝑖(𝜎1) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) ≥ 2 . So,  ∑𝑖∈𝑁  𝑇𝑖(𝜎1) −
 𝑇max(𝜎1) must be ≥ 1. Finally, for  𝜎2 is optimal, then r = ∑𝑖∈𝑁  𝑐𝑖(𝜎2) + ∑𝑖∈𝑁𝑇𝑖(𝜎2) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) − 𝑇max(𝜎2). Since  

∑𝑖∈𝑁  𝑐𝑖(𝜎2) − ∑𝑖∈𝑁  𝑐𝑖(𝑆𝑃𝑇) ≥ 3. So, no more condition needs. Hence N1 − 1 ≤ r ≤ 𝑁2
∗ + 1 or r ∈ [N1 −1, 𝑁2

∗ + 1]. Thus, 

the theorem is true for N1 = 4. ∎ 

 

By the same manner, we continue for k-1 efficient solutions. Table 1 shows the cases for different optimal solutions. We 

see that if the SPT gives optimal solution, then 𝑁2
∗ has no condition in the case of one efficient solution, also SPT gives 

optimal if 𝑁2
∗ ≥  1 in the case of number of efficient solutions is equal to 2.  Ans so on for other possibilities. 
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Table 1. Conditions on 𝑁2
∗ for different efficient solutions 

𝐍𝟏 SPT 𝝈 𝝈𝟏 𝝈𝟐 𝝈𝟑 . . . 𝝈𝐤−𝟏 

1 -         

2 𝑁2
∗ ≥  1 -        

3 𝑁2
∗ ≥  2 𝑁2

∗ ≥ 1 -       

4 𝑁2
∗ ≥  3 𝑁2

∗ ≥ 2 𝑁2
∗ ≥ 1 -      

5 𝑁2
∗ ≥  4 𝑁2

∗ ≥ 3 𝑁2
∗ ≥ 2 𝑁2

∗ ≥ 1 -     

6 𝑁2
∗ ≥  5 𝑁2

∗ ≥ 4 𝑁2
∗ ≥ 3 𝑁2

∗ ≥ 2 𝑁2
∗ ≥ 1 -    

. . . . . . . -   

. . . . . . . . -  

𝒌 − 𝟏 𝑁2
∗ ≥  k − 2 𝑁2

∗ ≥ 𝑘 − 3 𝑁2
∗ ≥ 𝑘 − 4 𝑁2

∗ ≥ 𝑘 − 5 𝑁2
∗ ≥ 𝑘 − 6 . . . - 

Examples  

1- Suppose we have the following 4-job problem 

 

n 1 2 3 4 

pi 7 9 10 15 

di 20 15 12 10 

At first, by enumeration method the optimal solution is (1, 2, 3, 4), with  ∑𝑖∈𝑁  𝐶𝑖(𝑂𝑃𝑇)+∑𝑖∈𝑁𝑇𝑖(𝑂𝑃𝑇) = 90 + 46 = 136. 

LB = ∑𝑖∈𝑁  𝐶𝑖(𝑆𝑃𝑇)+𝑇𝑚𝑎𝑥(𝑜𝑝𝑡. ) = 90 + 31 = 121. 𝑁1= 3 (efficient solutions). Since  ∑𝑖∈𝑁  𝑇𝑖(SPT)-𝑇𝑚𝑎𝑥(𝑆𝑃𝑇) ≥ 2. 𝑁 ∗2=   

∑𝑖∈𝑁  𝑇𝑖(𝑆𝑃𝑇)-𝑇𝑚𝑎𝑥(𝑆𝑃𝑇) = 46 – 31 = 15, 𝑁 ∗2+1 = 16. Therefore  r ∈ [2,16]. 

 2- Consider the following 3-job problem 

 

 

We apply the theorem in details. 3-jobs means we have 3= 6 possible schedules. The aim is to find the best schedule 

according to mentioned objective function. SPT schedule is (1, 3, 2)  

 

 

 

 

LB = ∑𝑖∈𝑁  𝐶𝑖(𝑆𝑃𝑇)+𝑇𝑚𝑎𝑥(𝑜𝑝𝑡. ) = 28 + 2 = 30.  From the 6 schedules 2 of them are efficient.  

Schedule 1, (1, 2, 3),  (∑𝑖∈𝑁  𝐶𝑖(1), 𝑇𝑖(1)) = (32, 2) efficient solution 

Schedule 2, (1, 3, 2),  (∑𝑖∈𝑁  𝐶𝑖(2), 𝑇𝑖(2)) = (28, 8) efficient solution 

n 1 2 3 

pi 2 10 6 

di 9 10 20 

n 1 3 2 

pi 2 6 10 

di 9 20 10 

ci 2 8 18 

Ti 0 0 8 
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Schedule 3, (2, 1, 3),  (∑𝑖∈𝑁  𝐶𝑖(3), 𝑇𝑖(3)) = (40, 3) 

Schedule 4, (2, 3, 1),  (∑𝑖∈𝑁  𝐶𝑖(4), 𝑇𝑖(4)) = (44, 9)  

Schedule 5, (3, 1, 2),  (∑𝑖∈𝑁  𝐶𝑖(5), 𝑇𝑖(5)) = (32, 8)  

Schedule 6, (3, 2, 1),  (∑𝑖∈𝑁  𝐶𝑖(6), 𝑇𝑖(6)) = (40, 9). 

𝑁 ∗2 = ∑𝑖∈𝑁  𝑇𝑖(𝑆𝑃𝑇)-𝑇𝑚𝑎𝑥(𝑆𝑃𝑇) = 8-8 = 0, so 𝑁 ∗2 + 1 = 1, Therefore  r ∈ [1, 1]. Here, by enumeration method the 

optimal solution is 𝜎 = (1, 2, 3), with  ∑𝑖∈𝑁  𝐶𝑖(𝜎)+∑𝑖∈𝑁𝑇𝑖 (𝜎 ) = 32 + 2 = 34. Therefore, 𝑟 + LB must equal to optimal value 

34. So, 𝑟 = 4 which does not satisfy  r ∈ [1, 1]. Because from Table 1, the condition is 𝑁2
∗ = ∑𝑖∈𝑁𝑇𝑖(𝑜𝑝𝑡. ) − 𝑇max (𝑜𝑝𝑡. ) 

≥ 1, which is here 0.                                                  

 

6. Conclusions and Suggestions 

 

We conclude at the end of this work that one of the key elements in understanding the objective function's nature and the 

approach taken to solve the problem is the lower bound of the problem. Additionally, efficient solutions are employed to 

discover the best answer; nevertheless, the relationship between them and our objective function will open up a new field of 

study: the difference between the optimal value and the lower bound using efficient solutions. In order to answer any problem 

of this kind, this subject opens algebraic operations and notions. The idea can be used for deriving lower bounds for branch 

and bound techniques, heuristics method. Finally, using this objective function's new lower bound undoubtedly produces 

additional outcomes. 
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   NP-Hardنظرية جديدة للحدود الدنيا في مشاكل الجدولة متعددة الأهداف من نوع 

 2, اياد محمد رمضان 1ز محمودحسن عزي

 قسم الرياضيات، كلية العلوم، جامعة السليمانية، إقليم كردستان، العراق 2،قسم الرياضيات، كلية التربية، جامعة كرميان، إقليم كردستان، العراق1
على جهاز واحد، يجب معالجة كل من )ن( عمل بشكل مستمر. عند الوقت صفر، تكون كل عمل جاهزة للمعالجة. تتمثل المهمة في ايجاد ترتيب   الخلاصة: 

ة توضح  قدم نظرييقلل من إجمالي مجموع أوقات الإكمال بالإضافة إلى مجموع التأخير. هذه المسالة غير مقيدة بخوارزمية متعددة الحدود  بسبب الثانية. ن
ابقة تعمل على مسائل  العلاقة بين الحل الأمثل والحدود الدنيا وعدد الحلول الفعالة. الحالة هي أن النظرية تعمل على هذه المسائل، بينما كانت الأعمال الس

ة. بالإضافة إلى ذلك، تسمح النظرية باكتشاف  مقيدة بخوارزمية متعددة الحدود. هذه النظرية تحدد  نطاق الحد الأدنى، وهو أمر بالغ الأهمية لتحديد أفضل إجاب
 .حدود دنيا جديدة من خلال فتح مفاهيم جبرية

 . حلول كفؤة , حل امثلحلول ذات حد أدنى، متعددة الأهداف،  الكلمات المفتاحية:  
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