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1. Introduction

Over the past few decades, multi-objective optimization has gained importance as a study area because it has been shown to
be a simple and successful method for solving practical optimization problems (Manal and Faez, 2020). Multi-objective
optimization's conflict restricts the scheduling direction of workable solutions, and current algorithms struggle to balance
parameters or fail to identify the best solution for the problem (Liu et al., 2020, 2023). There are many papers addressing
functions with many objectives in scheduling (Lauff and Werner, 2004). (Qader et al. 2023) focused of some structures on
multi-objective fuzzy scheduling problems. (Salh and Ramadan, 2022) introduced three algorithms for bi-objective problems
in hierarchical and simultaneous cases. Also, many studies found for flow shop problems. (Abdulkareem Zeidan, 2013)
proposed genetic algorithm to finding the optimal schedule with minimum makespan. The following the issue class is taken
into consideration: n jobs 1,2, ..., n must be handled by one machine (m=1). which becomes accessible at time zero, requires
processing time that is positive p; (Manal and Faez, 2022). A processing time is assigned to each job p; and a due date d;,
are detailed. With a timetable, we can calculate the tardiness The completion time ci for every job i, and T; =
max {¢; — d;, 0} and Tp,,x = max {T;}. In this paper the sum of completion times is a multi-objective function that we
examine.Y ;e ¢; added with the sum of tardiness Y;cyTi on single machine. A theorem is presented to find a range of lower
bounds in such cases when one of the criteria is NP-hard namely ;.5 Ti (Du and Leung, 1990).
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2. Related Works

Nowadays, two to three optimization objectives are taken into consideration in the majority of multi-objective optimization
situations. Scholars mostly employ, heuristic algorithms, hybrid algorithms, etc. to address these many issues. The multi-
objective under consideration is the sum of completion times Y};cy c; added with the sum of tardiness Y;cnTi on single
machine. There are two directions of research regarding multi-criteria.

First, researchers using branch and bound with some new lower bounds for multi-objective problems. (Abdullah, 2010)
presented algorithms to solve primary and secondary criteria. (Abdul-Razaq and Ali, 2015) used branch and bound algorithm
to minimize three objectives simultaneously. (Chachan, and Hameed, 2019) applied four upper bounds to solve four criteria
by branch and bound algorithm. (Chachan and Ali, 2020) discussed five criteria problem, and used branch and bound
algorithm. (lbrahim et al., 2022) reported two methods to solve five criteria problems namely branch and bound, and local
methods. Lastly, (Zhao, Q., Yuan,2024) showed an interesting structure of lexicographical type of problem, they studied the
total tardiness as primary criterion where maximum lateness, weighted number of tardy jobs, and the total weighted tardiness
were secondary criteria.

Second, some theories were presented to restrict lower bounds for multi-objective functions. These techniques help the
decision makers to choose the best solution among a set of comprised solutions. (Ramadhan and Jabbar,2006) formulated a
new theorem for total completion times plus the maximum tardiness.

To restrict the range of lower bounds. (Ramadan, 2011) generalized the idea to sum of weighted completion times added
with maximum weighted tardiness. (Amin and Ramadan, 2021) studied the sum of maximum earliness and maximum
tardiness by the sum technique. (Mahmod et al., 2022) applied the theorem for the total square completion time and
maximizing earliness. In fuzzy environment with triangular fuzzy numbers, (Ramadan, 2021, 2023) extended the idea to the
total fuzzy completion time and maximum fuzzy earliness problem, and defined a new definition which is m-strongly positive
fuzzy numbers also, minimizes total fuzzy completion time and maximum fuzzy tardiness. Forn tri-criteria, (Hassan et al.,
2022) generalized the idea to three-criteria problem of minimize the sum of total completion time, maximum earliness and
maximum tardiness using efficient solutions. Also, (Sharif and Ramadan, 2023) studied three criteria of maximum earliness,
maximum tardiness, and maximum late work simultaneously

Focusing to these criteria, the criterion is solvable in polynomial times (P-hard). That is why the theorem works effectively.
In this paper, and for the first time we introduce the same idea for an NP-hard criterion Y:;c5Ti which is one of the difficult
criteria in scheduling (Zhao, Q., Yuan,2024).

3. Main Problem

Since Y;enTi is NP-hard problem, the theorem fails to determine the range of lower bound. So, we present a condition on
problems that related to the main problem.

4. Job- Scheduling Concepts

Start with some important notations of scheduling problems. Here, we only focus on the used notations on single machine.
Jobs i, (i=1, ..., n) have (Manal and Faez, 2020):
N =the set {1,2,3, ..., n}.
P, = processing time for job i .
d; = due date for job i .
C; = completion time for job i.
Li = |ateneSS Of JOb i, Li = Ci - di
T; = tardiness of job i, T; = max {L;, 0}
EDD- rule: (early due date) The order of the jobs is nondecreasing of d;
SPT-rule: (short processing time) The order of the jobs is nondecreasing of p;.
LB: ( lower bound ) It is below or equal to the optimal value.
UB: (upper bound ) It exceeds or is equivalent to the optimal value.
Opt.: optimal solution.

5. Relation between Optimal and Efficient Solutions:
Our objective function is

97



Iraqgi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (96-101)

Yien CitXienT:. 1)

Before giving the relationship between efficient solutions and the optimum value, or LB we define the following
LB= ZiEN Ci(SPT) + Tmax (Opt-)
UB = ¥ien Ci(SPT) + XienT; (SPT)

Theorem:
A non-negative integer r exists such that LB + r = optimal value, r € [N; — 1, N5 + 1] iff
Zf;& Yk Ni=(j+1) > i-1-j, where N; = number of efficient solutions of (1), Ny = Yien T; (0pt.) — Tmax (0PL.).

i>j+1

Proof:
Since LB < optimal value, Thus, a non-negative integer r exists such that LB + r = optimal value satisfies the theorem's first
component. It is still to be proven that r € [N; — 1, N; + 1] orto show N; — 1 < r < N; + 1. Now LB+r = optimal value,
thus r= optimal value- LB < UB - LB
= YienCi(SPT) + XienTi(SPT) — Xien Ci(SPT) — Tiyax (0pt.) = YienTi(0pt.) — Trmax (0pt.) = N; < N; +1 . Hence
r < N; + 1. We will prove N; — 1 < r by induction on N;.
If N; = 1, In other words, SPT is the only efficient solution then

r = optimal value —LB = ¥;enCi(SPT) + XienTi(opt.) — XienCi(SPT) — Tray (0pt.) = XienTi(opt.) — Trax(opt.) =
YienTi(SPT) — Tpay (SPT) > 0. Thus N,—1<r<N;+1 :
Thatisr € [N; — 1, N5 + 1], Consequently, the theorem holds valid for N; = 1. m

If N; = 2, i.e, With SPT and o, there are two efficient solutions., say. N; = 2 implies that N; — 1 = 1, in case of SPT is
optimal then, r = YienCi(SPT) + YienTi(SPT) — YienCi(SPT) + Tax (opt.) = XienTi(SPT) — Tpax (SPT) . The
condition is it must be > 1.

In case of o is optimal then
r = YienCi(0) + XienTi(0) — Xien Ci(SPT) — Thax (0) = Yien€i(0) — Xien €i(SPT) + XienTi(0) — Tmax (0) . Since
Yienci(0)—Yienci(SPT) = 1. So, no condition on ¥,;enTi(0) — Tmax () is necessary. so r € [N; — 1, N; + 1] Thus,
theorem holds valid for N, = 2. m

If N; = 3, i.e., Three efficient solutions are available SPT, ¢, and 61, say. N; =3 - N; — 1 = 2,

in case of SPT is optimal, then r = Y;en ¢;(SPT) + YienTi(opt.) — Yien Ci(SPT) — Tax (0pt.) = XienTi(SPT) —
Tmax (SPT). The condition is it must be > 2. In case of ¢ is optimal , thenr = Y;enci(0) + XienTi(0) — Xien i (SPT) —
Tmax(0) = Yien €i(0) — Lien Ci(SPT) + YienTi(0) — Tmax (0). Since  Yienci(0) — Yienci(SPT) = 1. So, the condition
is it must be > 1. Finally, in the case of o isoptimal, thenr = Y;cnci(01) + YienTi(01) — Yien i (SPT) — Trax (7). Since
Yienci(o1) + Xienci(SPT) = 2. So, no condition on Y;enTi(01) — Tmax(oy). Hence N; —1<r<N;+1orre
[N; —1,N; + 1]. Thus, the theorem is true for N; = 3. m

If N; = 4, i.e., there are four efficient solutions SPT, ¢, 04,0, say. Ny =4 - N; —1 =3,

In case of SPT is optimal, then r = Y;en ¢i(SPT) + YienT;(SPT) — Xien €i(SPT) — Trax (SPT) = YienT:i(SPT) —
Tmax (SPT). The condition is it must be > 3. In case of o is optimal, thenr = Y ;cyci(0) + YienTi(0) — Yien i (SPT) —
Tmax(0). Since Yenci(0) — Yienci(SPT) = 1. So, the condition is it must be > 2. In case of o is optimal, thenr =
Yien€i(01) + XienTi(01) — Xien €i(SPT) — Trax(01). Since Yienci(01) — Xienci(SPT) 22 . S0,  YienTi(oy) —
Tmax(01) must be > 1. Finally, for o, is optimal, thenr = Y;cyci(03) + XienTi(02) — Yien €i (SPT) — Tmax(02). Since
Yienci(oz) — Yienci(SPT) = 3. So, no more condition needs. Hence N; —1 <r <N, + 1orr € [N; —1,N; + 1]. Thus,
the theorem is true for N; = 4. m

By the same manner, we continue for k-1 efficient solutions. Table 1 shows the cases for different optimal solutions. We

see that if the SPT gives optimal solution, then N3 has no condition in the case of one efficient solution, also SPT gives
optimal if N; = 1 in the case of number of efficient solutions is equal to 2. Ans so on for other possibilities.
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Table 1. Conditions on N, for different efficient solutions

Ny SPT o 2] o, o3 Ox_1
1 -
2 N; = -
3 N; 2 Np=1
4 N; >3 N; =2 N;>1
5 N3 > 4 N; =3 N; =2 N; =1
6 N;=>5 N; = N; =3 N; =2 N;>1
k-1 N; = k-2 N;=>k-3 Ny > k—4 N;=k-5 N;=k-6
Examples
1- Suppose we have the following 4-job problem
n 2 3 4
pi 7 9 10 15
di 20 15 12 10

At first, by enumeration method the optimal solution is (1, 2, 3, 4), with ¥;cny C;(OPT)+Y;enT;(OPT) = 90 + 46 = 136.
LB = ¥;en Ci(SPT)+T 0. (opt.) = 90 + 31 = 121. N,= 3 (efficient solutions). Since Y;en Ti(SPT)-Tpax (SPT) > 2. N ,=

Y ienTi(SPT)-Tyax (SPT) = 46 — 31 = 15, N %,+1 = 16. Therefore r € [2,16].

2- Consider the following 3-job problem

We apply the theorem in details. 3-jobs means we have 3!= 6 possible schedules. The aim is to find the best schedule
according to mentioned objective function. SPT schedule is (1, 3, 2)

n 1 2 3
Pi 10 6
di 9 10 20

n 1 3 2
pi 2 6 10
di 9 20 10
Ci 2 8 18
Ti 0 0 8

LB =Y ;en Ci(SPT)+Ty 0 (0opt.) =28 + 2= 30. From the 6 schedules 2 of them are efficient.
Schedule 1, (1, 2, 3), (CienCi(1),T;(1)) = (32, 2) efficient solution
Schedule 2, (1, 3, 2), ienCi(2),T;(2)) = (28, 8) efficient solution
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Schedule 3, (2, 1, 3), CienCi(3),T:(3)) = (40, 3)
Schedule 4, (2, 3, 1), CienCi(4),T;(4)) = (44,9)
Schedule 5, (3, 1, 2), (CienCi(5),T;(5)) =(32, 8)
Schedule 6, (3, 2, 1), (CienCi(6),T;(6)) = (40, 9).

N %, =Y enTi(SPT)-Ty0 (SPT) = 8-8 = 0, SO N %, + 1= 1, Therefore r € [1, 1]. Here, by enumeration method the
optimal solution is o = (1, 2, 3), with Y;cn Ci(0)+XenT; (0) = 32 + 2 = 34. Therefore, r + LB must equal to optimal value
34. So, r = 4 which does not satisfy r € [1, 1]. Because from Table 1, the condition is Ny = Y;cnTi(opt.) — Tax (0pt.)
> 1, which is here 0.

6. Conclusions and Suggestions

We conclude at the end of this work that one of the key elements in understanding the objective function's nature and the
approach taken to solve the problem is the lower bound of the problem. Additionally, efficient solutions are employed to
discover the best answer; nevertheless, the relationship between them and our objective function will open up a new field of
study: the difference between the optimal value and the lower bound using efficient solutions. In order to answer any problem
of this kind, this subject opens algebraic operations and notions. The idea can be used for deriving lower bounds for branch
and bound techniques, heuristics method. Finally, using this objective function's new lower bound undoubtedly produces
additional outcomes.
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