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1. Introduction

In many statistical applications, accurately estimating the parameters of probability distributions is fundamental for
making reliable decisions, and among such distributions, the gamma distribution is of particular importance due to its
wide use in such areas as probabilistic modelling of failure Times, analysis of environmental and medical data. However,
the process of estimating the parameters of this distribution becomes complicated and sensitive in the presence of
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contaminated data or impurities (outliers), as these abnormal values lead to the deviation of estimates away from their
true values, which impairs the efficiency and accuracy of statistical analysis (Zhao & Wang, 2012).

To overcome this problem, wavelet Shrinkage techniques have emerged as an effective tool for data processing and
extracting the real signals underlying noise or pollution (Kerkhof & Molenaar, 2008). These techniques rely on converting
data to the waveform domain, then applying shrinkage strategies to the waveform coefficients to remove or mitigate the
effect of unwanted components (such as noise or outliers) and then reconstructing the purified signal. This method is
particularly suitable for data that are heterogeneous or contain topical features that are difficult to detect by conventional
means.

This research focuses on studying the effect of pollution in estimating the gamma distribution parameters and reviews the
effectiveness of wave reduction techniques in mitigating these effects by analyzing contaminated data and comparing the
estimation results before and after using wavelet processing. The research also seeks to identify the most appropriate
minimization techniques (such as fixed or soft threshold minimization) and the best waveform bases that improve the
accuracy of estimates, thereby enhancing the efficiency of the statistical models used (Elias and Ali, 2025).

2. Parameter Estimation for Gamma Distribution

The gamma distribution is one of the important continuous probability distributions, and it is widely used in statistical
modelling, especially in areas related to positive and non-negative phenomena, such as waiting times, device lifetimes,
water flows, and others.

The gamma distribution is defined by two basic parameters (Xiao Ke et al., 2023):

1. The shape parameter is often denoted by a
2. Measurement parameter denoted by 8

The probability density function of the gamma distribution takes the following form (Ozancan, 2021):
a1 G
6°T(a) ’
Used to maximize the likelihood Function of the given data (MLE). Estimation equations are often non-linear and require
numerical techniques (iterative algorithms such as the Newton-Raphson algorithm). This method is efficient under ideal
conditions, but it is susceptible to contamination or outliers (Zhou, 2024).

f(x;a,0) = x>0 (€))

Two gamma parameters are estimated by:
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Where: X is the average, and the digamma function ¢ (&) is the first derivative of the logarithm of the Gamma function
(Loaiy and Huda, 2021).

3. Impact of Data Contamination on Statistical Estimation

In statistical analysis, it is often assumed that the collected data accurately represents the studied society. However, this
assumption may not always be fulfilled, especially when data is contaminated, indicating the presence of anomalous
values (Outliers) or atypical sightings that do not follow the same probability distribution as the data is assumed to have
(Botani et al., 2025).

Causes of data contamination can stem from several factors, including errors in measurement or recording, merging data
from different heterogeneous sources, rare or exceptional cases within the sample, and overlapping multiple distributions
in one sample.

Types of pollution: Mild contamination refers to values that diverge slightly from the overall trend data, and severe
contamination (Heavy Contamination) is characterized by data points that are substantially distant from the other values
and may drastically alter the results of the analysis (Elias and Ali, 2025).

Structured contamination occurs when the contaminated values follow a specific pattern (e.g., they derive from a different
distribution). The presence of contamination in the data can lead to deviations in estimates (bias), meaning that the average
estimate does not reflect the true value of the parameter. Increased variability results in a lack of accuracy and instability
in estimates. Loss of consistency arises when estimates fail to approach the true value as the sample size increases. There

77



Iraqgi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (76-86)

is a negative impact on hypothesis tests, such as a high error rate for the first or second type. Additionally, distortion of
the overall shape of the distribution complicates the application of traditional probabilistic models.

Data pollution is a major challenge in applied statistics, and it directly affects the accuracy of estimation and analysis. It
is therefore necessary to use pollution-resistant tools and methods when analyzing data, especially in cases where it is
difficult to avoid or detect pollution directly.

4. Wavelet Shrinkage Techniques in Data Denoising

Noise in data is a common problem in many applied fields such as signal processing, image analysis, time series analysis,
and experimental measurements. Noise refers to undesirable components that mix with the real signal and impair the
accuracy of the analysis or statistical estimate.

One of the most effective methods of noise removal or mitigation is the wavelet Shrinkage technique, which has proven
its efficiency in extracting useful signals from noise-contaminated data without losing fine details.

Wavelets are mathematical functions used to analyze signals and data at several levels of accuracy. Unlike conventional
transformations (such as the Fourier transform), waveforms provide a positional analysis of both time and frequency,
allowing the detection of sudden or localized changes in the signal.

The wavelet reduction technique is based on the following steps:

I.  Transforming data to the wave domain (Wavelet Transform).

I1. Transforming the original data into waveform coefficients that represent the signal at multiple levels.

I11. Application of the shrinkage or threshing process.

IV. The wave coefficients with small values (thought to be caused by noise) are reduced or deleted, and the larger values
(thought to represent the real signal) are retained.

V. Signal reconstruction (Inverse Wavelet Transform).

VI. Transform the purified coefficients back to the temporal or spatial domain to recreate the original signal without

noise.
5. Evaluation Criteria

To measure the accuracy of the parameter estimated for the Gamma distribution for several samples (k), the mean squared
error (MSE) can be used as in the following formula:

>, (6, - 6,)°

MSR(8) = . (3)

6. Proposed Method

The proposed method dealt with the outlier problem in data that has a Gamma distribution when its parameters are
estimated (shape and scale) using the Maximum Likelihood Estimate method. The treatment is carried out through wavelet
shrinkage, which includes:

I- Compute the Discrete Wavelet Transformation (DWT) coefficients for a wavelet W (x), as Daubechies, Symlets, and
Coiflets wavelets.

I1- The threshold level ¢ is estimated by one of the methods (e.g., SURE, Minimax, and Universal threshold).
I11- Thresholding rules, Soft is used to keep or kill the discrete wavelet coefficients. Thus, we get the modified DWT
coefficients MW (x).

IV- Compute the inverse of the modified DWT as in formula (4).
x* = Inv(MW (x)) (4)

V- Finally, the data X", The maximum likelihood estimators of a and b for the Gamma distribution are the solutions to
the simultaneous equations (Johnson et al. 1994):

n 1/n
log(@) = log (?/ﬂxf‘) . ab>0 ; xe (0, (5)
i=1

b=x"/a (6)
7. Simulation Design and Real Data Application

To show the effect of outliers on the maximum likelihood estimations of the shape and scale parameters for the gamma
distribution and comparison between the classical and the proposed method in terms of efficiency and accuracy of the
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estimated parameters for the Gamma distribution, an experimental aspect was done by simulating the Gamma distribution,
then an applied aspect of the real data based on the MSE criterion. And by designing a program in MATLAB (version
2020a) dedicated to this purpose.

7.1 Experimental Aspect

Six cases were selected for shape and scale parameters (1, 1) and (2, 0.5), respectively, the sample sizes (100, 200, and
300), and by adding (2, 3, and 4) outliers to the generated data from the gamma distribution. For the first experiment with
n = 100, shown in Figure 1.
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Figure (1): The generated data (*), Outliers (.), and processed data (-)

Figure 1 shows the scatter plot of the generated data from the Gamma distribution (*) at shape and scale parameters (1),
and the two outliers (.), and then the data processed from the outliers (-) using the Daubechies wavelet and order of 5
(Db5) with Sure threshold and soft rule. The maximum likelihood estimators of a and b for the Gamma distribution, based
on the data generated, which included outliers, and processed, are calculated in Table 1 along with the estimation error.

Table (1): MLE for two parameters and absolute estimation error

The data a b Absolute estimation error (a) | Absolute estimation error (b)
generated data 1.1291 0.9141 0.1291 0.0859
which included outliers 0.6845 2.3457 0.3155 1.3457
Processed data 1.1570 1.4005 0.1570 0.4005

Table 1 shows the estimated parameter values (shape and scale) for the generated data. They were equal to (1.1291 and
0.9141) respectively, with absolute estimation error equal to (0.1291 and 0.0859) respectively, while the data added to
outliers whose parameters reached (0.6845 and 2.3457) with a larger absolute estimation error equal to (0.3155 and
1.3457) respectively, due to the presence of the outliers. While the proposed method for processing data from outliers was
the parameter values equal to (1.1570 and 1.4005), and the least absolute estimation error equal to (0.1570 and 0.4005),
respectively.

Figures 2 and 3 show the probability density function and the cumulative probability function for the data generated from
the gamma distribution with a sample size of 100, and the added data have outliers, and the process using the wavelet
(Db5) and estimating the level of thresholding using SURE with the rule of soft thresholding.
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Figure (2): Gamma pdf for generated data (-), Outliers (-), and processed data (-)
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Figure (3): Gamma CDF for generated data (-), Outliers (-), and processed data (-)
For the comparison between the proposed and classical methods in estimating the parameter of the Gamma distribution,
the experiment was repeated 1000 times, and the average criteria for MSE were calculated. Three wavelets (Db5), Symlets
of order 1 (Sym1), and the Fejér—Korovkin wavelet of order 4 (Fk4) were used with different methods in estimating the
threshold level (SURE, Minimax, and Universal), with threshold rule (Soft), and for different sizes (100, 200, and 300).
The results are summarized in tables (2-7) for the average of the MSE criteria when at x ~ Gamma(l, 1), and

x ~ Gamma(2, 0.5).
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Table (2): Average of MSE Criteria When n = 100

Method Shape and scale Wavelet Threshold AMSE(a) AI\/ISE(b)
SURE 0.0536 2.6623
Db5 Minimax 0.0551 1.9488
Universal 0.1516 1.6278
SURE 0.0759 3.0802
Proposed 1, 1) Sym1l Minimax 0.0467 1.5543
Universal 0.1112 1.1675
SURE 0.0465 2.2535
Fk4 Minimax 0.0532 1.6080
Universal 0.1384 1.1832
Classical 0.1800 6.2428
Without outliers 0.0197 0.0258
Table (3): Average of MSE Criteria When n = 200
Method Shape and Scale Wavelet Threshold AMSE(a) AMSE(b)
SURE 0.0264 1.2542
Db5 Minimax 0.0386 0.8356
Universal 0.0785 0.7688
SURE 0.0297 1.1711
Proposed 1,1 Sym1l Minimax 0.0388 0.6703
Universal 0.0865 0.5116
SURE 0.0276 1.1546
Fka Minimax 0.0379 0.7332
Universal 0.0893 0.5420
Classical 0.1680 4.1465
Without outliers 0.0086 0.0127
Table (4): Average of MSE Criteria When n = 300
Method Shape and scale Wavelet Threshold AMSE(a) AI\/lSE(b)
SURE 0.0160 0.5356
Db5 Minimax 0.0562 0.3040
Universal 0.0866 0.3040
SURE 0.0207 0.4390
Proposed 1,1 Sym1l Minimax 0.0721 0.2297
Universal 0.1437 0.1668
SURE 0.0175 0.5060
Fk4 Minimax 0.0598 0.2613
Universal 0.1398 0.1785
Classical 0.1442 2.6494
Without outliers 0.0058 0.0087
Table (5): Average of MSE Criteria When n = 100
Method Shape and Scale Wavelet Threshold AMSE(a) AMSE(b)
SURE 1.4581 5.8050
Db5 Minimax 1.2224 4.7752
Universal 0.9353 3.8816
SURE 1.4417 5.6210
Proposed (2,0.5) Sym1l Minimax 1.2345 4.1763
Universal 1.1236 3.6859
SURE 1.3652 5.0663
Fk4 Minimax 1.2681 45217
Universal 1.0880 3.7678
Classical 1.7246 7.7029
Without outliers 0.0896 0.0057




Iraqgi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (76-86)

Table (6): Average of MSE Criteria When n = 200

Method Shape and scale Wavelet Threshold AMSE(a) AI\/ISE(b)

SURE 0.6541 0.8015

Db5 Minimax 0.4699 0.6669

Universal 0.3472 0.6055

SURE 0.5212 0.6255

Proposed (2,0.5) Sym1 Minimax 0.3903 0.4915

Universal 0.3083 0.4187

SURE 0.5682 0.6860

Fk4 Minimax 0.4317 0.5521

Universal 0.3151 0.4521

Classical 1.1967 1.6730

Without outliers 0.0381 0.0028

Table (7): Average of MSE Criteria When n = 300

Method Shape and scale Wavelet Threshold AM SE(a) AMSE(b)

SURE 0.2322 0.1985

Db5 Minimax 0.1362 0.1427

Universal 0.1361 0.1326

SURE 0.1577 0.1405

Proposed (2,0.5) Sym1 Minimax 0.1126 0.0953

Universal 0.1441 0.0743

SURE 0.1935 0.1645

Fk4 Minimax 0.1255 0.1137

Universal 0.1352 0.0842

Classical 0.8915 0.7081

Without outliers 0.0249 0.0019

Tables 2—7 show that all the proposed methods have better efficiency than the classical method in estimating shape and
scale parameters for the Gamma distribution, depending on the average of the criteria MSE for all cases. We also notice

that there is a major impact on the accuracy of the estimated parameters due to the presence of outliers.

For comparison between the proposed methods, the best results for AMSE are summarized in Table 8. When x ~ Gamma
(1, 1), the AMSE(a), the Fk4 wavelet was the best at a (100) sample size, while the Db5 wavelet was the best at (200
and 300) sample sizes with the SURE threshold method. When x ~ Gamma (2, 0.5), the AMSE (), the Db5 wavelet was
the best at a (100) sample size, while the Sym1 wavelet was the best at a (200 and 300) sample sizes with Universal
threshold method at a (100 and 200) sample sizes and Minimax threshold method at a (300) sample size. The AMSE (b),

for the Sym1 wavelet with the Universal threshold method was the best to simulate all cases.

Table (8): The Best AMSE Criteria

Sample Size Shape and Scale Wavelet Threshold Method AMSE (a)
100 1,1 Fk4 SURE 0.0465
200 (1,1) Db5 SURE 0.0264
300 (1,1 Db5 SURE 0.0160
100 (2,0.5) Db5 Universal 0.9353
200 (2,0.5) Syml Universal 0.3083
300 (2,0.5) Sym1 Minimax 0.1126

Sample Size Shape and Scale Wavelet Threshold Method AMSE(b)
100 (1,1 Syml Universal 1.1675
200 (1, 1) Syml Universal 0.5116
300 1,1 Sym1l Universal 0.1668
100 (2,0.5) Sym1 Universal 3.6859
200 (2,0.5) Syml Universal 0.4187
300 (2,0.5) Sym1 Universal 0.0743
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7.2 Application Part

The real data is taken from the source (Montgomery, 2012, p. 787). The sample size was 21 observations; the data were
obtained from the operation of a factory for the transfer oxidation of ammonia to nitric acid for 21 days. The variable
represents (stack loss X) with processed data from the outliers (-) using the (Sym3) wavelet with Universal threshold and
soft rule, as shown in Figure 4.

The real and processed data about the gamma distribution were tested using the Kolmogorov-Smirnov (K. S.) and Chi-
Square (%) tests and are summarized in Table 9.

Stack Loss Data (Montgomery, 2012) with Wavelet Denoising (Sym3)

® Real deta

w— Processed data

Value

8.0 2.5 5.0 75 10.0 125 15.0 175 20.0
Sequence of Observations

Figure (4): Real data (.), and processed data (-)
Table (9): Test of the Gamma distribution

The real data Processed data
K.S. Chi-squared K.S. Chi-squared
0.14475 3.365 0.20228 4.4692
(0.71827) (0.3387) (0.31295) (0.1070)
Critical values
0.2872 | 7.8147 | 0.2872 | 5.9915

Table 9 shows that the (K.S.) and (x?) tests support the hypothesis that the real and processed data have a gamma
distribution. Figure 5 for the box plot indicates the presence of three outliers in the real data, while it did not indicate their
presence in the processed data. Outliers were deleted from the real data, using the box plot of the remaining data (18),
which indicates that there are no outliers, as shown in Figure 5.
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Figure (5): Box Plot for Real Data
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Maximum likelihood estimates of a and b for the gamma distribution, based on real data that included outliers, data after
outliers were removed, and processed with absolute error calculation, are summarized in Table 10.

Table (10): MLE for Two Parameters and Absolute Estimation Error

The data a b Absolute Error (a) Absolute Error (b)
The data after removing outliers 7.5493 18545 | = e e
which included outliers 3.7910 4.6225 3.7583 2.7680
Processed data 6.6836 2.7535 0.8657 0.8990

Table 10 shows the estimated parameter values (shape and scale) for the data after removing outliers were equal to (7.5493
and 1.8545), respectively, while the data that included outliers whose parameters that reached (3.7910 and 4.6225), with
a larger absolute estimation error equal to (3.7583 and 2.7680), respectively, due to the presence of the outliers. While the
proposed method (using the (Sym3) wavelet with Universal threshold and soft rule) for processing data from outliers was
the parameter values equal to (6.6836 and 2.7535), and the least absolute estimation error equal to (0.8657 and 0.8990),
respectively.

Figure 6 shows the probability density function and the cumulative probability function for the real data (the same three
cases).

pdf which included outliers cdf which included outliers

0.06 T T 1 T T T T T
0.04
0.5F
0.02 -
0 L 1 L Il Il Il 1 0 Il 1 L 1 L Il Il
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
0 pdf The data after remove outliers : cdf The data after remove outliers
0.05 ] 0.5
0 1 Il L L 0 Il L L L
5 10 15 20 25 30 5 10 15 20 25 30
pdf Processed data
0.06 T T T T 1
0.04
05
0.02 -
0 Il L Il 1 Il 0 L Il 1 Il L
10 15 20 25 30 35 40 10 15 20 25 30 35 40

Figure (6): Gamma PDF and CDF for real data

In the first row of Figure 6 (Data After Removing Outliers), the PDF reveals a noticeable spread in the distribution with
a peak at a moderate value and a long tail towards higher values. This indicates the presence of outliers, which skew the
distribution and introduce asymmetry. The corresponding CDF rises gradually, reflecting the broader data spread. In
alignment with the table, this scenario yielded a higher absolute error for both methods (3.7910 for method (a) and 4.6225
for method (b)), confirming that the presence of outliers negatively impacts estimation accuracy, particularly affecting
method (b).

In the second row (data after removing outliers), the PDF becomes narrower and more symmetrical after removing
outliers. The peak height increases, and the distribution’s spread decreases, indicating that the data became more
concentrated around the central values. The CDF curve also steepens, confirming the reduced variability. This reduction
in data dispersion led to a noticeable improvement in absolute error, especially for method (b), which dropped to 1.8545,
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showing its sensitivity to outliers and substantial benefit from their removal. Method (a), however, saw its error increase
to 7.5493, suggesting that it might rely on the extreme values removed or be more stable in the presence of outliers.

The third row (processed data) illustrates the PDFs and CDFs after applying data processing techniques. The PDF in this
case becomes smoother and slightly broader than in Case 2, but without the heavy tails seen in Case 1. The CDF rises
consistently without sudden jumps, reflecting a balanced distribution.

As shown in the table, both methods achieved their best performance in this case, with absolute errors significantly reduced
(0.8657 for method (a) and 0.8990 for method (b)). This confirms that data processing not only minimizes the influence
of outliers but also improves overall data structure, yielding more reliable estimation outcomes.

The figure clearly illustrates how the distribution characteristics- such as spread, symmetry, and concentration- evolve
across the three cases. These visual patterns directly correspond to the changes in absolute errors for all cases; processed
data consistently offers the most balanced distribution and optimal estimation results.

8. Conclusions

1. All the proposed methods have better efficiency than the classical method in estimating shape and scale parameters
for the Gamma distribution, depending on the average of the criteria (MSE) for all cases.

2. There is a bad effect of outliers on the estimation quality of the gamma distribution parameters using MLE.

3. Sym1 wavelet with the Universal threshold method was the best to simulate all cases in estimating a scale parameter
of the gamma distribution.

4. Fk4 wavelet was the best at a (100) sample size, while (Db5) wavelet was the best at a (200 and 300) sample sizes
with the SURE threshold method at estimating a shape parameter (1) of the gamma distribution.

5. Db5 wavelet was the best at a (100) sample size, while (Sym1) wavelet was the best at a (200 and 300) sample sizes
with Universal threshold method at a (100 and 200) sample sizes and Minimax threshold method at a (300) sample
size to estimate a shape parameter (2) of the gamma distribution.

6. For real data, the proposed method for processing data from outliers and estimating the parameters of the gamma
distribution was the best and had the lowest absolute estimation error.
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