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This paper uses the Maximum Likelihood Estimation method to investigate the 

impact of data contamination on the accuracy of parameter estimation for the Gamma 

distribution. A de-noising approach based on wavelet shrinkage has been proposed 

to address the limitations posed by contamination. Several types of wavelet functions 

were employed in combination with different threshold estimation techniques, 

namely Universal, Minimax, and Stein’s Unbiased Risk Estimate, applying the soft 

thresholding rule. The study involved simulating data sets generated from the 

Gamma distribution and analyzing real-life data assumed to follow the same 

distribution. A specialized program was developed in MATLAB to conduct these 

simulations and implement both the classical Maximum Likelihood Estimation 

method and the proposed wavelet-based de-noising techniques. The performance of 

the parameter estimates was compared using the Mean Squared Error criterion. The 

findings demonstrated that data contamination significantly affects the accuracy of 

parameter estimates obtained through the classical Maximum Likelihood Estimation 

method. In contrast, the proposed wavelet shrinkage method effectively reduced the 

influence of contamination and enhanced the accuracy of parameter estimation for 

the Gamma distribution. The study highlights the practical value of integrating 

wavelet-based denoising techniques into statistical estimation processes, particularly 

when working with contaminated datasets. 
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1. Introduction 

In many statistical applications, accurately estimating the parameters of probability distributions is fundamental for 

making reliable decisions, and among such distributions, the gamma distribution is of particular importance due to its 

wide use in such areas as probabilistic modelling of failure Times, analysis of environmental and medical data. However, 

the process of estimating the parameters of this distribution becomes complicated and sensitive in the presence of 
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contaminated data or impurities (outliers), as these abnormal values lead to the deviation of estimates away from their 

true values, which impairs the efficiency and accuracy of statistical analysis (Zhao & Wang, 2012). 

To overcome this problem, wavelet Shrinkage techniques have emerged as an effective tool for data processing and 

extracting the real signals underlying noise or pollution (Kerkhof & Molenaar, 2008). These techniques rely on converting 

data to the waveform domain, then applying shrinkage strategies to the waveform coefficients to remove or mitigate the 

effect of unwanted components (such as noise or outliers) and then reconstructing the purified signal. This method is 

particularly suitable for data that are heterogeneous or contain topical features that are difficult to detect by conventional 

means.  

This research focuses on studying the effect of pollution in estimating the gamma distribution parameters and reviews the 

effectiveness of wave reduction techniques in mitigating these effects by analyzing contaminated data and comparing the 

estimation results before and after using wavelet processing. The research also seeks to identify the most appropriate 

minimization techniques (such as fixed or soft threshold minimization) and the best waveform bases that improve the 

accuracy of estimates, thereby enhancing the efficiency of the statistical models used (Elias and Ali, 2025). 

2. Parameter Estimation for Gamma Distribution 

The gamma distribution is one of the important continuous probability distributions, and it is widely used in statistical 

modelling, especially in areas related to positive and non-negative phenomena, such as waiting times, device lifetimes, 

water flows, and others. 

 The gamma distribution is defined by two basic parameters (Xiao Ke et al., 2023): 

1. The shape parameter is often denoted by 𝛼 

2. Measurement parameter denoted by 𝜃 

The probability density function of the gamma distribution takes the following form (Ozancan, 2021): 

𝑓(𝑥; 𝛼, 𝜃) =
𝑥𝛼−1𝑒

−𝑥
𝜃

𝜃𝛼Γ(𝛼)
        , 𝑥 > 0                                                                                                                                       (1) 

Used to maximize the likelihood Function of the given data (MLE).  Estimation equations are often non-linear and require 

numerical techniques (iterative algorithms such as the Newton-Raphson algorithm). This method is efficient under ideal 

conditions, but it is susceptible to contamination or outliers (Zhou, 2024). 

Two gamma parameters are estimated by: 

𝛼̂: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝐿𝑛(∝̂) − 𝜑(𝛼̂) = 𝐿𝑛(𝑥) −
1

𝑛
∑ 𝐿𝑛(𝑥𝑖)

𝑛

𝑖=1
     𝑎𝑛𝑑       𝜃 =

𝑥

∝̂
                                                                 (2) 

Where:  𝑥  is the average, and the digamma function 𝜑(𝛼̂) is the first derivative of the logarithm of the Gamma function 

(Loaiy and Huda, 2021).  

3. Impact of Data Contamination on Statistical Estimation 

In statistical analysis, it is often assumed that the collected data accurately represents the studied society. However, this 

assumption may not always be fulfilled, especially when data is contaminated, indicating the presence of anomalous 

values (Outliers) or atypical sightings that do not follow the same probability distribution as the data is assumed to have 

(Botani et al., 2025). 

Causes of data contamination can stem from several factors, including errors in measurement or recording, merging data 

from different heterogeneous sources, rare or exceptional cases within the sample, and overlapping multiple distributions 

in one sample. 

Types of pollution: Mild contamination refers to values that diverge slightly from the overall trend data, and severe 

contamination (Heavy Contamination) is characterized by data points that are substantially distant from the other values 

and may drastically alter the results of the analysis (Elias and Ali, 2025). 

Structured contamination occurs when the contaminated values follow a specific pattern (e.g., they derive from a different 

distribution). The presence of contamination in the data can lead to deviations in estimates (bias), meaning that the average 

estimate does not reflect the true value of the parameter. Increased variability results in a lack of accuracy and instability 

in estimates. Loss of consistency arises when estimates fail to approach the true value as the sample size increases. There 
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is a negative impact on hypothesis tests, such as a high error rate for the first or second type. Additionally, distortion of 

the overall shape of the distribution complicates the application of traditional probabilistic models. 

Data pollution is a major challenge in applied statistics, and it directly affects the accuracy of estimation and analysis. It 

is therefore necessary to use pollution-resistant tools and methods when analyzing data, especially in cases where it is 

difficult to avoid or detect pollution directly. 

4. Wavelet Shrinkage Techniques in Data Denoising 

Noise in data is a common problem in many applied fields such as signal processing, image analysis, time series analysis, 

and experimental measurements. Noise refers to undesirable components that mix with the real signal and impair the 

accuracy of the analysis or statistical estimate. 

One of the most effective methods of noise removal or mitigation is the wavelet Shrinkage technique, which has proven 

its efficiency in extracting useful signals from noise-contaminated data without losing fine details. 

Wavelets are mathematical functions used to analyze signals and data at several levels of accuracy. Unlike conventional 

transformations (such as the Fourier transform), waveforms provide a positional analysis of both time and frequency, 

allowing the detection of sudden or localized changes in the signal. 

The wavelet reduction technique is based on the following steps: 

I. Transforming data to the wave domain (Wavelet Transform). 

II. Transforming the original data into waveform coefficients that represent the signal at multiple levels. 

III. Application of the shrinkage or threshing process. 

IV. The wave coefficients with small values (thought to be caused by noise) are reduced or deleted, and the larger values 

(thought to represent the real signal) are retained. 

V. Signal reconstruction (Inverse Wavelet Transform). 

VI. Transform the purified coefficients back to the temporal or spatial domain to recreate the original signal without 

noise. 

5. Evaluation Criteria 

To measure the accuracy of the parameter estimated for the Gamma distribution for several samples (k), the mean squared 

error (MSE) can be used as in the following formula: 

𝑀𝑆𝑅(𝜃) =
∑ (𝜃𝑖 − 𝜃𝑖)

2𝑘
𝑖=1

𝑘
                                                                                                                                                          (3) 

6. Proposed Method  

The proposed method dealt with the outlier problem in data that has a Gamma distribution when its parameters are 

estimated (shape and scale) using the Maximum Likelihood Estimate method. The treatment is carried out through wavelet 

shrinkage, which includes:  

I- Compute the Discrete Wavelet Transformation (DWT) coefficients for a wavelet 𝑊(𝑥), as Daubechies, Symlets, and 

Coiflets wavelets.  

II- The threshold level   is estimated by one of the methods (e.g., SURE, Minimax, and Universal threshold). 

III- Thresholding rules, Soft is used to keep or kill the discrete wavelet coefficients. Thus, we get the modified DWT 

coefficients ( )xMW .  

IV- Compute the inverse of the modified DWT as in formula (4). 

𝑥∗ = 𝑙𝑛𝑣(𝑀𝑊(𝑥))                                                                                                                                                                         (4) 

V- Finally, the data 
*x , The maximum likelihood estimators of a and b for the Gamma distribution are the solutions to 

the simultaneous equations (Johnson et al. 1994): 

log(𝑎̂) = 𝑙𝑜𝑔 (𝑥
∗

∏ 𝑥𝑖
∗

𝑛

𝑖=1

⁄ )

1 𝑛⁄

    ;     𝑎, 𝑏 > 0    ;   𝑥 ∈ (0, ∞)                                                                                              (5) 

𝑏̂ = 𝑥
∗

𝑎̂                                                                                                                                                                                           (6)⁄  

7. Simulation Design and Real Data Application 

To show the effect of outliers on the maximum likelihood estimations of the shape and scale parameters for the gamma 

distribution and comparison between the classical and the proposed method in terms of efficiency and accuracy of the 
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estimated parameters for the Gamma distribution, an experimental aspect was done by simulating the Gamma distribution, 

then an applied aspect of the real data based on the MSE criterion. And by designing a program in MATLAB (version 

2020a) dedicated to this purpose. 

7.1 Experimental Aspect 

Six cases were selected for shape and scale parameters (1, 1) and (2, 0.5), respectively, the sample sizes (100, 200, and 

300), and by adding (2, 3, and 4) outliers to the generated data from the gamma distribution. For the first experiment with 

n = 100, shown in Figure 1.  

 
Figure (1): The generated data (*), Outliers (.), and processed data (-) 

Figure 1 shows the scatter plot of the generated data from the Gamma distribution (*) at shape and scale parameters (1), 

and the two outliers (.), and then the data processed from the outliers (-) using the Daubechies wavelet and order of 5 

(Db5) with Sure threshold and soft rule. The maximum likelihood estimators of a and b for the Gamma distribution, based 

on the data generated, which included outliers, and processed, are calculated in Table 1 along with the estimation error. 

Table (1): MLE for two parameters and absolute estimation error  

The data â  b̂  Absolute estimation error (a) Absolute estimation error (b) 

generated data 1.1291 0.9141 0.1291 0.0859 

which included outliers 0.6845 2.3457 0.3155 1.3457 

Processed data 1.1570 1.4005 0.1570 0.4005 

Table 1 shows the estimated parameter values (shape and scale) for the generated data. They were equal to (1.1291 and 

0.9141) respectively, with absolute estimation error equal to (0.1291 and 0.0859) respectively, while the data added to 

outliers whose parameters reached (0.6845 and 2.3457) with a larger absolute estimation error equal to (0.3155 and 

1.3457) respectively, due to the presence of the outliers. While the proposed method for processing data from outliers was 

the parameter values equal to (1.1570 and 1.4005), and the least absolute estimation error equal to (0.1570 and 0.4005), 

respectively. 

Figures 2 and 3 show the probability density function and the cumulative probability function for the data generated from 

the gamma distribution with a sample size of 100, and the added data have outliers, and the process using the wavelet 

(Db5) and estimating the level of thresholding using SURE with the rule of soft thresholding.   
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Figure (2): Gamma pdf for generated data (-), Outliers (-), and processed data (-) 

 
Figure (3): Gamma CDF for generated data (-), Outliers (-), and processed data (-) 

For the comparison between the proposed and classical methods in estimating the parameter of the Gamma distribution, 

the experiment was repeated 1000 times, and the average criteria for MSE were calculated. Three wavelets (Db5), Symlets 

of order 1 (Sym1), and the Fejér–Korovkin wavelet of order 4 (Fk4) were used with different methods in estimating the 

threshold level (SURE, Minimax, and Universal), with threshold rule (Soft), and for different sizes (100, 200, and 300). 

The results are summarized in tables (2-7) for the average of the MSE criteria when at ( )1,1~ Gammax , and 

( )5.0,2~ Gammax . 
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Table (2): Average of MSE Criteria When n = 100 

Method Shape and scale Wavelet Threshold ( )aAMSE  ( )bAMSE  

Proposed (1, 1) 

Db5 

SURE 0.0536 2.6623 

Minimax 0.0551 1.9488 

Universal 0.1516 1.6278 

Sym1 

SURE 0.0759 3.0802 

Minimax 0.0467 1.5543 

Universal 0.1112 1.1675 

Fk4 

SURE 0.0465 2.2535 

Minimax 0.0532 1.6080 

Universal 0.1384 1.1832 

Classical 0.1800 6.2428 

Without outliers 0.0197 0.0258 

Table (3): Average of MSE Criteria When n = 200 

Method Shape and Scale Wavelet Threshold  ( )aAMSE  ( )bAMSE  

Proposed (1, 1) 

Db5 

SURE 0.0264 1.2542 

Minimax 0.0386 0.8356 

Universal 0.0785 0.7688 

Sym1 

SURE 0.0297 1.1711 

Minimax 0.0388 0.6703 

Universal 0.0865 0.5116 

Fk4 

SURE 0.0276 1.1546 

Minimax 0.0379 0.7332 

Universal 0.0893 0.5420 

Classical 0.1680 4.1465 

Without outliers 0.0086 0.0127 

Table (4): Average of MSE Criteria When n = 300 

Method Shape and scale Wavelet Threshold  ( )aAMSE  ( )bAMSE  

Proposed (1, 1) 

Db5 

SURE 0.0160 0.5356 

Minimax 0.0562 0.3040 

Universal 0.0866 0.3040 

Sym1 

SURE 0.0207 0.4390 

Minimax 0.0721 0.2297 

Universal 0.1437 0.1668 

Fk4 

SURE 0.0175 0.5060 

Minimax 0.0598 0.2613 

Universal 0.1398 0.1785 

Classical 0.1442 2.6494 

Without outliers 0.0058 0.0087 

Table (5): Average of MSE Criteria When n = 100 

Method Shape and Scale Wavelet Threshold  ( )aAMSE  ( )bAMSE  

Proposed (2, 0.5) 

Db5 

SURE 1.4581 5.8050 

Minimax 1.2224 4.7752 

Universal 0.9353 3.8816 

Sym1 

SURE 1.4417 5.6210 

Minimax 1.2345 4.1763 

Universal 1.1236 3.6859 

Fk4 

SURE 1.3652 5.0663 

Minimax 1.2681 4.5217 

Universal 1.0880 3.7678 

Classical 1.7246 7.7029 

Without outliers 0.0896 0.0057 
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Table (6): Average of MSE Criteria When n = 200 

Method Shape and scale Wavelet Threshold  ( )aAMSE  ( )bAMSE  

Proposed (2, 0.5) 

Db5 

SURE 0.6541 0.8015 

Minimax 0.4699 0.6669 

Universal 0.3472 0.6055 

Sym1 

SURE 0.5212 0.6255 

Minimax 0.3903 0.4915 

Universal 0.3083 0.4187 

Fk4 

SURE 0.5682 0.6860 

Minimax 0.4317 0.5521 

Universal 0.3151 0.4521 

Classical 1.1967 1.6730 

Without outliers 0.0381 0.0028 

Table (7): Average of MSE Criteria When n = 300 

Method Shape and scale Wavelet Threshold  ( )aAMSE  ( )bAMSE  

Proposed (2, 0.5) 

Db5 

SURE 0.2322 0.1985 

Minimax 0.1362 0.1427 

Universal 0.1361 0.1326 

Sym1 

SURE 0.1577 0.1405 

Minimax 0.1126 0.0953 

Universal 0.1441 0.0743 

Fk4 

SURE 0.1935 0.1645 

Minimax 0.1255 0.1137 

Universal 0.1352 0.0842 

Classical 0.8915 0.7081 

Without outliers 0.0249 0.0019 

Tables 2–7 show that all the proposed methods have better efficiency than the classical method in estimating shape and 

scale parameters for the Gamma distribution, depending on the average of the criteria MSE for all cases. We also notice 

that there is a major impact on the accuracy of the estimated parameters due to the presence of outliers.  

For comparison between the proposed methods, the best results for AMSE are summarized in Table 8. When x ~ Gamma 

(1, 1), the    𝐴𝑀𝑆𝐸(𝛼), the Fk4 wavelet was the best at a (100) sample size, while the Db5 wavelet was the best at (200 

and 300) sample sizes with the SURE threshold method. When x ~ Gamma (2, 0.5), the 𝐴𝑀𝑆𝐸(𝛼), the Db5 wavelet was 

the best at a (100) sample size, while the Sym1 wavelet was the best at a (200 and 300) sample sizes with Universal 

threshold method at a (100 and 200) sample sizes and Minimax threshold method at a (300) sample size. The 𝐴𝑀𝑆𝐸(𝑏), 

for the Sym1 wavelet with the Universal threshold method was the best to simulate all cases.  

Table (8): The Best AMSE Criteria  

Sample Size Shape and Scale Wavelet Threshold Method 𝐴𝑀𝑆𝐸(𝛼) 

100 (1, 1) Fk4 SURE 0.0465 

200 (1, 1) Db5 SURE 0.0264 

300 (1, 1) Db5 SURE 0.0160 

100 (2, 0.5) Db5 Universal 0.9353 

200 (2, 0.5) Sym1 Universal 0.3083 

300 (2, 0.5) Sym1 Minimax 0.1126 

Sample Size Shape and Scale Wavelet Threshold Method ( )bAMSE  

100 (1, 1) Sym1 Universal 1.1675 

200 (1, 1) Sym1 Universal 0.5116 

300 (1, 1) Sym1 Universal 0.1668 

100 (2, 0.5) Sym1 Universal 3.6859 

200 (2, 0.5) Sym1 Universal 0.4187 

300 (2, 0.5) Sym1 Universal 0.0743 



Iraqi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (76-86) 
 

83 

 

7.2 Application Part 

The real data is taken from the source (Montgomery, 2012, p. 787). The sample size was 21 observations; the data were 

obtained from the operation of a factory for the transfer oxidation of ammonia to nitric acid for 21 days. The variable 

represents (stack loss 𝑋) with processed data from the outliers (-) using the (Sym3) wavelet with Universal threshold and 

soft rule, as shown in Figure 4.   

The real and processed data about the gamma distribution were tested using the Kolmogorov-Smirnov (K. S.) and Chi-

Square (χ2) tests and are summarized in Table 9. 

 
Figure (4): Real data (.), and processed data (-) 

Table (9): Test of the Gamma distribution 

The real data Processed data 

K.S. Chi-squared K.S. Chi-squared 

0.14475 

(0.71827) 

3.365 

(0.3387) 

0.20228 

(0.31295) 

4.4692 

(0.1070) 

Critical values 

0.2872 7.8147 0.2872 5.9915 

Table 9 shows that the (K.S.) and (χ2) tests support the hypothesis that the real and processed data have a gamma 

distribution. Figure 5 for the box plot indicates the presence of three outliers in the real data, while it did not indicate their 

presence in the processed data. Outliers were deleted from the real data, using the box plot of the remaining data (18), 

which indicates that there are no outliers, as shown in Figure 5. 

  
Figure (5): Box Plot for Real Data  
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Maximum likelihood estimates of a and b for the gamma distribution, based on real data that included outliers, data after 

outliers were removed, and processed with absolute error calculation, are summarized in Table 10. 

Table (10): MLE for Two Parameters and Absolute Estimation Error  

The data  â  b̂  Absolute Error (a) Absolute Error (b) 

The data after removing outliers 7.5493 1.8545 --------- --------- 

which included outliers 3.7910 4.6225 3.7583 2.7680 

Processed data 6.6836 2.7535 0.8657 0.8990 

Table 10 shows the estimated parameter values (shape and scale) for the data after removing outliers were equal to (7.5493 

and 1.8545), respectively, while the data that included outliers whose parameters that reached (3.7910 and 4.6225), with 

a larger absolute estimation error equal to (3.7583 and 2.7680), respectively, due to the presence of the outliers. While the 

proposed method (using the (Sym3) wavelet with Universal threshold and soft rule) for processing data from outliers was 

the parameter values equal to (6.6836 and 2.7535), and the least absolute estimation error equal to (0.8657 and 0.8990), 

respectively. 

Figure 6 shows the probability density function and the cumulative probability function for the real data (the same three 

cases).   

  

Figure (6): Gamma PDF and CDF for real data 

In the first row of Figure 6 (Data After Removing Outliers), the PDF reveals a noticeable spread in the distribution with 

a peak at a moderate value and a long tail towards higher values. This indicates the presence of outliers, which skew the 

distribution and introduce asymmetry. The corresponding CDF rises gradually, reflecting the broader data spread. In 

alignment with the table, this scenario yielded a higher absolute error for both methods (3.7910 for method (a) and 4.6225 

for method (b)), confirming that the presence of outliers negatively impacts estimation accuracy, particularly affecting 

method (b). 

In the second row (data after removing outliers), the PDF becomes narrower and more symmetrical after removing 

outliers. The peak height increases, and the distribution’s spread decreases, indicating that the data became more 

concentrated around the central values. The CDF curve also steepens, confirming the reduced variability. This reduction 

in data dispersion led to a noticeable improvement in absolute error, especially for method (b), which dropped to 1.8545, 
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showing its sensitivity to outliers and substantial benefit from their removal. Method (a), however, saw its error increase 

to 7.5493, suggesting that it might rely on the extreme values removed or be more stable in the presence of outliers. 

The third row (processed data) illustrates the PDFs and CDFs after applying data processing techniques. The PDF in this 

case becomes smoother and slightly broader than in Case 2, but without the heavy tails seen in Case 1. The CDF rises 

consistently without sudden jumps, reflecting a balanced distribution. 

As shown in the table, both methods achieved their best performance in this case, with absolute errors significantly reduced 

(0.8657 for method (a) and 0.8990 for method (b)). This confirms that data processing not only minimizes the influence 

of outliers but also improves overall data structure, yielding more reliable estimation outcomes. 

The figure clearly illustrates how the distribution characteristics- such as spread, symmetry, and concentration- evolve 

across the three cases. These visual patterns directly correspond to the changes in absolute errors for all cases; processed 

data consistently offers the most balanced distribution and optimal estimation results. 

8. Conclusions 

1. All the proposed methods have better efficiency than the classical method in estimating shape and scale parameters 

for the Gamma distribution, depending on the average of the criteria (MSE) for all cases.  

2. There is a bad effect of outliers on the estimation quality of the gamma distribution parameters using MLE. 

3. Sym1 wavelet with the Universal threshold method was the best to simulate all cases in estimating a scale parameter 

of the gamma distribution. 

4. Fk4 wavelet was the best at a (100) sample size, while (Db5) wavelet was the best at a (200 and 300) sample sizes 

with the SURE threshold method at estimating a shape parameter (1) of the gamma distribution. 

5. Db5 wavelet was the best at a (100) sample size, while (Sym1) wavelet was the best at a (200 and 300) sample sizes 

with Universal threshold method at a (100 and 200) sample sizes and Minimax threshold method at a (300) sample 

size to estimate a shape parameter (2) of the gamma distribution. 

6. For real data, the proposed method for processing data from outliers and estimating the parameters of the gamma 

distribution was the best and had the lowest absolute estimation error. 
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للبيانات الموزعة بواسطة    الأعظم  لإمكان التحسين تقدير    SURE  و  Minimaxو     Universalدمج انكماش الموجات مع
 جاما

 3،هيام عبد المجيد حياوي  2، طه حسين علي  1حذيفة حازم طه  

قسم الإحصاء والمعلوماتية، كلية  2قسم بحوث العمليات والتقنيات الذكائية، كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل، العراق،  1

  .كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل، العراققسم الإحصاء والمعلوماتية، 3.الدين، أربيل،الإدارة والاقتصاد، جامعة صلاح 

 

للتحقيق في تأثير تلوث البيانات على دقة تقدير المعلمات لتوزيع جاما. تم اقتراح نهج    الإمكان الأعظمطريقة تقدير    بحثال  استخدم هذي :  الخلاصة
المويجات جنبا إلى جنب مع   دواللإزالة الضوضاء يعتمد على انكماش المويجات لمعالجة القيود التي يفرضها التلوث. تم استخدام عدة أنواع من  

غير المتحيز ، وتطبيق قاعدة العتبة الناعمة. تضمنت الدراسة  SURE، و Universal  ،Minimaxتقدير طرق تقنيات تقدير العتبة المختلفة، وهي 
المفترضة لمتابعة نفس التوزيع. تم تطوير برنامج مخصص في ماتلاب حقيقية  محاكاة مجموعات البيانات الناتجة عن توزيع جاما وتحليل البيانات ال

الكلاسيكية وتقنيات إزالة الضوضاء القائمة على المويجات المقترحة. تمت مقارنة الإمكان الأعظم  قدير  لإجراء هذه المحاكاة وتنفيذ كل من طريقة ت
الخطأ التربيعي. أظهرت النتائج أن تلوث البيانات يؤثر بشكل كبير على دقة تقديرات المعلمات التي متوسط  أداء تقديرات المعلمات باستخدام معيار  

الكلاسيكية. في المقابل ، فإن طريقة انكماش المويجات المقترحة قللت بشكل فعال من    الإمكان الأعظميقة تقدير  تم الحصول عليها من خلال طر 
ى المويجات  تأثير التلوث وعززت دقة تقدير المعلمات لتوزيع جاما. تسلط الدراسة الضوء على القيمة العملية لدمج تقنيات تقليل الضوضاء القائمة عل

 الإحصائي, خاصة عند العمل مع مجموعات البيانات الملوثة.  في عمليات التقدير
 ، انكماش المويجات ، تلوث البيانات ، وتقدير المعلمات.  الإمكان الأعظم، تقدير  كاما توزيع  الكلمات المفتاحية:

 
 


