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 Alzheimer's disease damages brain neurons, resulting in memory loss. Early and accurate 

diagnosis of the disease is crucial for implementing preventive measures. However, 

differentiating between Alzheimer’s and healthy data in older adults is challenging due to 

the similarities in their brain patterns and intensities, complicating researchers' efforts to 

make an accurate diagnosis. Therefore, the research aims to use machine learning to 

improve diagnosis and classification of the disease, such as support vector machines 

(SVM), decision trees, and feedforward neural networks (FFNN). Classification algorithms 

were applied to the Alzheimer’s disease dataset, including 2149 cases, and the models were 

evaluated through metrics (Accuracy, Precision, Recall, specificity, F1 Score, F2 Score, F3 

score, and AUC). 

Following data analysis and obtaining the results, we reached the Decision Tree model 

excels across all metrics, achieving high scores in accuracy (96.32%), precision (94.63%), 

recall (95%), specificity (97.05%), and AUC (94.96%). This demonstrates its ability to 

correctly identify true positives and negatives, and reduce false positives and negatives, 

makes it the most reliable model for accurately classifying Alzheimer's disease cases. In 

contrast, the SVM linear and FFANN models offer a good balance with accuracy (83.53% 

and 83.57%), specificity (89.27% and 91.72%), and AUC (89.63% and 89.84%). However, 

their lower recall (73.03% and 68.68%) compared to the Decision Tree may result in 

missed positive cases, making them less effective for classification. The SVM RBF model 

is the least effective option, with high precision and specificity but poor performance across 

all other metrics and lacks overall balance, resulting in a high number of false negatives. 

metrics and lacks overall balance, resulting in a high number of false negatives. 

Conclusion: The decision tree model outperforms other models, making it the best choice 

for Alzheimer's disease classification. 
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1. Introduction 

 

Alzheimer's disease is a neurological disorder that harms neurons and leads to cognitive problems, causing memory 

loss and other problems. It results from abnormal brain buildup and currently has no cure. While treatments are 

available to ease symptoms, scientists are working on ways to prevent or treat it. The disease is becoming increasingly 

common, affecting millions worldwide, and is expected to triple by 2050. This rise presents major challenges for 

patients, families, and the global economy, with ongoing research aimed at developing more effective solutions. 

(Breijyeh and Karaman, 2020) 

https://stats.uomosul.edu.iq/index.php/stats/article/view/54070
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-1485-6604
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Machine learning is revolutionizing various sectors, especially healthcare, by accurately predicting outcomes from 

large datasets. It can help diagnose diseases like Alzheimer's by analyzing medical data. However, diagnosing 

Alzheimer's is complex and often takes a long time. Many patients with Alzheimer's are not diagnosed correctly. This 

is because it requires a lot of information and can be difficult for doctors to do. Machine learning can help improve 

diagnosis accuracy and classifications, utilizing techniques such as support vector machines (SVM) decision trees, 

and feedforward neural networks (FFNN). 

Supervised learning is a form of machine learning in which models are trained using labeled data to classify new items 

and predict their category in classification tasks. Different classification algorithms offer different advantages: SVMs 

excel at distinguishing between data, decision trees offer clear interpretability and adaptability, and FFNNs have 

adaptive learning capabilities. The unique strengths of each algorithm make them suitable for different classification 

challenges. 

This study assesses the performance of three machine learning algorithms in classifying Alzheimer's disease data based 

on various patient features. By comparing the algorithms across several metrics, we aim to determine the most reliable 

method for enhancing the accuracy of Alzheimer's disease diagnosis in clinical settings. 

2. Material and methods  

2.1 Machine learning 

Machine learning (ML), a branch of artificial intelligence, uses algorithms to identify patterns in data across a variety 

of domains, such as web searches, stock market forecasts, genetic analysis, and weather forecasting. Its role in 

healthcare is rapidly expanding, supporting diagnosis, treatment planning, and drug discovery. Machine learning 

excels at analyzing large data sets, identifying relationships, and adapting to new patterns. Unlike traditional 

optimization methods, machine learning improves models by learning from training errors to improve predictions, 

allowing computers to boost performance through experience without explicit programming. (Han, Kamber and Pei, 

2012) (Choi et al., 2020) 

In classification tasks, machine learning uses algorithms called classifiers, which analyze data characteristics (feature 

vectors) to categorize information. For example, in medical imaging, classifiers can distinguish between healthy and 

diseased tissue, trained on large-scale clinical datasets, and can apply the learned knowledge to new cases, dramatically 

improving diagnostic accuracy and enabling personalized medicine. By leveraging massive amounts of data, these 

models enhance early detection of diseases and enable timely interventions, revolutionizing healthcare delivery. 

(Alpaydın, 2010) (Ratner, 2017) 

Depending on the learning methods, supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning are the four main categories under which machine learning techniques fall. One of the basic 

methods is supervised learning, which trains systems and makes predictions using labeled input data. It is further 

divided into classification and regression tasks. Classification algorithms, such as support vector machines (SVMs), 

decision trees, k-nearest neighbors (KNNs), and artificial neural networks (ANNs), each have advantages and are 

appropriate for certain classification issues, depending on the features of the data and the demands of the task. (Han, 

Kamber and Pei, 2012)  

2.2 Support Vector Machines 

Support Vector Machines (SVMs) are supervised learning models that can be applied to classification and regression 

problems. What sets SVMs apart is their focus on minimizing classification errors while maximizing the separation 

margin between data points, which is why they are often called Maximum Margin Classifiers. This margin refers to 

the distance between two parallel hyperplanes surrounding a central hyperplane, which acts as the boundary separating 

different classes. The larger this margin, the better the model typically performs on new, unseen data. (Saradha and 

Pavithra, 2024) 

Support vector machines are grounded in the Structural Risk Minimization (SRM) principle derived from statistical 

learning theory. Unlike traditional approaches that aim only to reduce training error, SRM minimizes the upper limit 

of generalization error by considering both the training error and a complexity term associated with the model’s VC 

dimension. By balancing these factors, SVMs often exhibit superior generalization, leading to better results on new 

data. To achieve the best separation of classes, SVMs map the input data into a higher-dimensional space, making it 

easier to distinguish between complex patterns. (Byun and Lee, 2002) 
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We represent data points in the form {(x₁, y₁), (x₂, y₂), ..., (xn, yn)}, where yn is either -1 or 1, indicating the class of 

each point. There are many possible hyperplanes that can separate these training samples. (Srivastava and Bhambhu, 

2010), (Ratner, 2017) 

Let's assume they are fully separated by a d-dimensional hyperplane, defined by the equation. 

𝑤𝑇 . 𝑥𝑖 + 𝑏 = 0                                                                                                                                                                        (1) 

Support vector machines work by creating a boundary that differentiates between two data classes. The primary goal 

of SVM is to determine the values of the weight vector w and the bias b such that the hyperplane is placed as far away 

from the nearest data points as possible. To achieve this, SVM defines two boundary planes with the following 

equations: 

𝑤𝑇 . 𝑥𝑖 + 𝑏 = 1      𝑓𝑜𝑟   𝑦𝑖 = 1

𝑤𝑇 . 𝑥𝑖 + 𝑏 = −1     𝑓𝑜𝑟   𝑦𝑖 = −1
}                                                                                                                                (2) 

Here, x represents the input feature vector of a data point, w is the weight vector, b is the bias (a scalar value), and yi 

is the class label, which can be either +1 or −1-. As shown in Figure1. 

 

 

 Figure 1, it is clear that the red level is the best, because it is the most robust against local disturbances when training 

the sample 

The challenge in separation is to find the hyperplane that satisfies the conditions wT. xi + b ≥ 1  for positive examples 

and wT. xi + b ≤ −1 for negative examples. Since SVM aims to maximize the margin between these two classes, the 

hyperplane that achieves this can be found by minimizing  
1

2
‖w‖ . 

min
𝑤,𝑏

𝜙 (𝑤) =
‖𝑤‖2

2
                                                                                                                                                                     (3) 

Consequently, the optimal separating hyperplane can be identified by minimizing equation (3) to effectively separate 

the training data as specified in equation (4). 

𝑦𝑖(𝑤𝑇 . 𝑥𝑖 + 𝑏) ≥ 1  𝑖 = 1,2, . . 𝐼                                                                                                                                            (4) 

Where I represent the number of training data points 

To reduce the complexity of this problem, we introduce the Lagrange function, resulting in: 
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This optimization problem solved by the saddle points of the Lagrange’s Function  

Lp = L(w,b,α) =
1

2
‖w‖2  ∑ αi(

I

i=1

yi(wT. xi + b) − 1) 

=  
1

2
 wTw ∑ αi(

I

i=1

yi(wT. xi + b) − 1)                                                                                                                              (5) 

Where αi represents a Lagrange multiplier. By taking the partial derivatives of w and b in Equation (5), setting them 

equal to zero, and substituting the results back into Equation (5), we obtain the dual problem. 

Ld(α) = ∑ αi

I

i=1

− 1
2⁄ ∑ ∑ αiαjyiyjxi

Txj

I

j=1

I

i=1

                                                                                                                       (6) 

The dual Lagrangian (Ld) must be maximized concerning nonnegative αi>0 To find the optimal hyperplane. It is 

important to note that the dual Lagrangian Ld(α) is formulated based on the training data and depends solely on the 

scalar products of input patterns (xixj). 

 

Moreover, K(xi, xj) ≡ 𝜙(xi)
T𝜙(xj)  is referred to as the kernel function, there are several kernel functions that are 

commonly used in SVM like (Linear Kernel , Polynomial Kernel, Gaussian (RBF) Kernel and Sigmoid Kernel). (Kar 

et al., 2024) (Byun and Lee, 2002) 

 

 2.3 Decision Tree 

Decision trees are powerful supervised learning algorithms used for both classification and prediction tasks. They are 

regarded as one of the leading machine learning techniques for decision analysis and the classification of unknown 

cases. By organizing data into a hierarchical structure of decisions and outcomes, decision trees offer strong predictive 

power while remaining easy to interpret, making them ideal for a range of data-driven applications. Decision trees are 

especially popular due to their straightforward interpretation and efficiency when processing large datasets, making 

them faster and more effective than many other methods. (James et al., 2013) (Rokach and Maimon, 2015) 

The key elements of a decision tree that contribute to its effectiveness in analysis are: (Tan et al., 2019) 

Root Node: The tree begins with a root node that represents the main question or problem to be addressed. 

Branches: These branches extend from the root nodes, and symbolize the different options and actions available at 

each decision point. 

Nodes: These are decision points that lead to branches in two or more directions, based on the choices made among 

different options or considerations. 

Leaves (Leaf Nodes):  Indicates the outcome or decision and shows the outcome of the path taken through the tree. 

Decision Tree Splitting 

There are various measures that can be used to determine the most effective way to split the data points.  These 

measures are defined based on the class distribution of the data both before and after the split. In a decision tree, each 

observation is assigned to the most frequent class within its group. The classification error rate is calculated as the 

proportion of training observations in that group that do not belong to the most common class, expressed as (James et 

al., 2013) 

 

𝐸 = 1 − max
𝑘

(𝑝̂𝑚𝑘)                                                                                                                                                                        (7) 

In this context, 𝒑̂𝒎𝒌  denotes the proportion of training observations in the mth group that belong to the kth class.  

However, classification error alone is not sensitive enough for effective tree growth, leading to the preference for two 

alternative measures. One such measure is the Gini index, which assesses total variance across the K classes. It yields 

a low value when the   𝒑̂𝒎𝒌   values are near zero or one, indicating node purity. A small Gini index suggests that a 

node predominantly contains observations from a single class. (Hastie, Tibshirani and Friedman, 2013) 

However, it has been found that classification error alone is not sensitive enough for effective tree growth, and in 

practice, two alternative measures are often preferred. 

The Gini index is defined by   
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Gini Index =∑  𝑝̂𝑚𝑘(1 −  𝑝̂𝑚𝑘)𝐾
𝑘=1                                                                                                                                           (8) 

Another measure is cross-entropy or deviance, defined as:  

Entropy = − ∑  𝑝̂𝑚𝑘𝑙𝑜𝑔

𝐾

𝑘=1

𝑝̂𝑚𝑘                                                                                                                                             (9) 

Given that  0 ≤  𝒑̂𝒎𝒌 ≤ 𝟏, it follows that  0 ≤ −𝒑̂𝒎𝒌𝒍𝒐𝒈𝒑̂𝒎𝒌 . Cross-entropy approaches zero when the p̂mk  values 

are close to zero or one, leading both cross-entropy and the Gini index to produce small values for pure nodes.  

When building decision trees, these measures are favored for assessing split quality due to their sensitivity to node 

purity, while classification error is preferred for improving final prediction accuracy during pruning. (Han, Kamber 

and Pei, 2012)  

2.4 Artificial Neural Networks 

Artificial neural networks are computer models inspired by the neural architecture of the brain, and learn from 

experience to solve complex problems more efficiently than traditional computers. Artificial neural networks offer a 

flexible approach to computing through parallel networks and pattern recognition, focusing on learning, self-

organization, and problem solving without relying on traditional programming methods. (del-Pozo-Bueno et al., 2023) 

Artificial neural networks come in many different forms, each designed for different tasks. This study focuses on the 

use of feedforward neural networks for data classification.  

Data in a feedforward neural network flows in one direction, starting from the input layer, which represents inputs 

from different attributes. Numeric or binary attributes are typically denoted by a single node. These inputs are routed 

to intermediate layers known as hidden layers, which consist of processing units called hidden nodes. Each hidden 

node processes signals from the input or previous hidden nodes, generating activation values that are sent to the next 

layer. The final layer, known as the output layer, processes these activation values to produce predictions for the output 

variables, with a single node representing the binary class label in binary classification tasks. This architecture is called 

feedforward neural networks because of the forward propagation of signals Figure(2). The network is fully connected, 

allowing each unit to contribute to the computations of the subsequent layer, enabling efficient modeling of complex 

functions. (Han, Kamber and Pei, 2012) (Tan et al., 2019) 

 
Finding the optimal architecture often involves trial and error and experimentation, commonly starting with a simple 

design and gradually increasing complexity until performance levels off. 

Common activation functions include the sigmoid, the rectified linear unit (ReLU), the hyperbolic tangent, the 

exponential linear unit, the leaky ReLU, and the gradient exponential linear unit. The specific task will determine the 

type of activation function used. Loss functions assess the discrepancy between the predicted and actual outputs, and 

guide the training process to minimize this discrepancy by adjusting the connection weights using optimization 

algorithms. (Bouraya and Belangour, 2024) 

Backpropagation is a common method that computes the gradient of the loss function with respect to the update 

weights. Different algorithms can be used, such as stochastic gradient descent (SGD) and adaptive moment estimation 

(ADAM). To learn the weights of a feedforward neural network (FFNN), an efficient algorithm is necessary to 

converge to the correct solution with sufficient training data. One approach is to treat each hidden node or output node 

as an independent realization and apply a weight update formula. However, this approach is limited by the lack of 
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prior knowledge of the true outputs of the hidden nodes, which complicates the determination of the error term(𝑦 −
𝑦̂). (Han, Kamber and Pei, 2012) (Jalil and Mahmood, 2012) 

Given our focus on FFNNs in this work, we can represent their operation mathematically as follows: 

𝑂𝑢𝑡𝑝𝑢𝑡 = activation(𝑊 ∗ input + 𝑏)                                                                                                                                (10) 

In this equation, W is the weight matrix that links neurons in the current layer to those in the previous layer. The term 

"input" denotes the vector from the preceding layer, b is the bias vector for each neuron in the dense layer, and 

"activation" refers to the applied activation function. 

The learning algorithm of the FFNN aims to find a set of w weights that minimizes the total sum of squared errors: 

𝐸(𝑤) =
1

2
 ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

                                                                                                                                                 (11) 

Here, the sum of squared errors is conditioned by www, where 𝑦̂ is affected by the weights assigned to the hidden 

nodes and the output nodes. The outputs of FFNNs are typically a nonlinear function of their coefficients, which 

complicates the search for a globally optimal solution to w. To address this optimization problem, gradient descent 

algorithms are used, using the weight update formula: (Tan et al., 2019) 

 𝑤𝑗 =  𝑤𝑗 − λ
𝐸(𝑤)

𝜕𝑤𝑗
                                                                                                                                                          (12)  

Where λ represents the learning rate, which guides weight adjustments to minimize the overall error, however, the 

non-linearity of the error function means that the gradient descent method can become trapped in local minima. 

(Mahmood and Haji Khider, 2023) 

2.5 Performance Metrics 

Comparing various algorithms is crucial in this study. Model evaluation helps assess the effectiveness and 

dependability of machine learning-based predictive models through systematic performance analysis.  

There are fundamental components of a confusion matrix (table 1) necessary for calculate the performance metrics:   

Table1 : Confusion Matrix 

A
ct

u
a
l 

V
a
lu

e 

Predicted Value 

True Positive (TP) False Negative (FN) 

False Positive (FP) True Negative (TN) 

Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                                                                                                                     (13) 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                                                                          (14) 

Accuracy measures the percentage of correct predictions a classifier makes on a given dataset and Precision is defined 

as the ratio of true positive forecasts to the proportion of true negative forecasts that are incorrectly classified as 

positive (FP). 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                                                               (15) 

Specificity =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                                                                                                     (16) 
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The recall includes all correctly identified positive cases, even those that were mistakenly classified as negative. 

Specificity measures the proportion of true negatives that are correctly identified by the classifier. 

𝐹𝛽 =  
(1 + 𝛽2) ∗ Precision ∗ Recall

(𝛽2 ∗ Precision) + Recall
                                                                                                                            (17) 

The scores of F1, F2, and F3 are calculated by setting β to 1, 2, and 3 and taking a positive real number. 

Precision and recall are vital metrics for evaluating performance in medical research focused on classification and 

diagnosis. While the F-measure represents the average of precision and recall, combining them into a single, easier-

to-comparison metric. Since false negatives can be more detrimental than false positives, recall is typically regarded 

as the most important metric in the medical field. Specificity indicates the model's ability to accurately identify 

individuals who do not have the disease. (Tan et al., 2019) (Assiri, Nazir and Velastin, 2020) 

AUC: The area under the curve (AUC) measures a classifier's performance, ranging from 0.50 (random guessing) to 

1.00 (perfect accuracy). A higher AUC signifies a better model, allowing comparison across different classifiers by 

considering all possible decision thresholds. (Tan et al., 2019) 

3. Results  

In this paper we used a dataset related to Alzheimer's disease that was taken from the publicly available Kaggle 

dataset (downloadable from [19]), which includes 2149 cases. The target or dependent variable is binary, with 1 

indicating the presence of Alzheimer's disease (760 cases) and a value of 0 indicating its absence (1,389 cases).  The 

independent variables consist of 32 attributes, including: 

Demographic Details [Age(x1), Gender(x2), Ethnicity(x3), Education Level(x4)]  

Lifestyle Factors [BMI (x5), Smoking (x6), Alcohol Consumption (x7), Physical Activity (x8), Diet Quality (x9), 

Sleep Quality (10)]. 

Medical History [Family History] Alzheimer’s (x11), Cardiovascular Disease (x12), Diabetes (x13), 

Depression(x14),Head Injury(x15), Depression (x14), Head Injury (x15), Hypertension (16)]. 

Clinical Measurements [Systolic BP (x17), Diastolic BP (x18), Cholesterol Total (x19), Cholesterol LDL (x20), 

Cholesterol HDL (x21), Cholesterol Triglycerides (x22)]. 

Cognitive and Functional Assessments [MMSE (Mini-Mental State Examination score) (x23), Functional 

Assessment (x24), Memory Complaints (x25), Behavioral Problems (x26), ADL (x27)]. 

When analyzing data with three algorithms, we split the dataset into two segments: 70% for training and 

validation, and 30% for testing the model's performance. In the analysis, we used Matlab(R2022b) to analyze. 

3.1 Support Vector Machine Analysis 

In our analysis and classification of Alzheimer's disease using SVM, we started by splitting the dataset into 70% for 

training and 30% for testing. Since the target of this dataset is to classify it into two groups (Alzheimer's disease and 

non-Alzheimer's disease), we chose binary SVM. We applied and compared different kernel functions, including linear 

kernel and radial basis function (RBF), to determine the most suitable model for this type of data. After training the 

models, we evaluated their accuracy using relevant metrics, as shown in Table (2). 

We used binary SVM to classify Alzheimer's disease data into two groups (Alzheimer's disease and non-Alzheimer's 

disease). We applied two different kernel functions (linear and RBF) and compared their performance. We then 

evaluated the accuracy of the models using various metrics Tables 2 and 3. 

 

Table 2 : Confusion Matrix for Alzheimer's Disease Classification 

A: SVM Linear Model  B: SVM RBF Model 

A
ctu

a
l 

Predicted Value 

Total 

 A
ctu

a
l 

Predicted Value 

Total 
Disease 

No 

Diseas

e 

 
Diseas

e 
No Disease 

Disease 555 205 760  Disease 270 490 760 

No 

Disease 
149 1240 1389  No Disease 36 1353 1389 
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Table 2 can be used to calculate a number of performance metrics, including: 

Table 3: Comparison of the percentage results between the SVM linear and the SVM RBF models. 

Metric 
SVM 

linear 

SVM 

RBF 
Explanation 

Accuracy 83.53 75.52 
SVM Linear is more accurate, correctly classifying more instances. This 

indicates that it is better at distinguishing between Alzheimer's patients. 

Precision 78.84 88.24 

Higher precision indicates that the SVM RBF model has a higher chance of 

being accurate for predicting Alzheimer's disease. It appears that the RBF 

model produces fewer false positives due to its increased precision. 

Recall 73.03 35.53 

The linear SVM model has a much higher recall, meaning that it identifies a 

higher proportion of true positive cases (Alzheimer’s disease). This is 

essential for medical diagnostics. 

Specificity   

The RBF SVM model is significantly more specific (97.4%) than the Linear 

SVM model (89.27%), demonstrating its superior ability to accurately identify 

healthy individuals 

F1 Score 75.82 50.66 
SVM Linear has a better balance between precision and recall, finding true 

Alzheimer's cases while avoiding misdiagnosis. 

F2 Score 74.12 40.35 
Recall is given greater weight than precision, particularly the F3 score, and 

the results further support the idea that the linear SVM model is more effective 

at identifying true positives. F3 Score 73.57 37.73 

AUC 89.63 59.86 
SVM Linear has a much higher AUC, indicating superior ability to 

differentiate between classes. 

 
Figure 3 (A and B) :ROC Curve (AUC) for SVM linear model and SVM RBF model. 

Based on Table 3 and Figure 3, we can conclude that SVM Linear is the preferred model for classifying Alzheimer's 

disease because of its higher accuracy, precision, F1 score, and AUC. It offers a more dependable diagnosis by 

reducing false positives while still accurately identifying Alzheimer's patients. In contrast, while SVM RBF performs 

well in terms of recall, it is overall less reliable due to its lower precision and AUC 

3.2 Decision Tree Analysis 

We used decision trees to analyze Alzheimer's disease data. We measured how accurate the models were using 

different metrics like (accuracy, precision, recall ...) table4. We used the Gini Index and Entropy to decide how to split 

the data into branches. The best split is the one that makes the branches the purest. 

 

 

Table 4: Confusion Matrix for Decision Tree Model 

A
ctu

a
l 

Predicted Value 

Total 
Disease No Disease 

Disease 722 38 760 

No Disease 41 1348 1389 
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Table 4 can be used to calculate a number of performance metrics, including: 

 Table 5: Percentage results of the Decision Tree model  

Metric Accuracy Precision Recall Specificity 
F1 

Score 

F2 

Score 

F3 

Score 
AUC 

Decision Tree 96.32 94.63 95.0 97.05 94.81 94.93 94.96 93.06 

 

Figure 4: ROC Curve (AUC) for Decision Tree model 

The resulting decision tree model accurately classified the majority of cases (96.32%) as shown in Table 5 and Figure 

4, and this is confirmed by the results for high precision (94.63%) and recall (95.00%), meaning it is good at finding 

people who actually have the disease. It also has high precision specificity (97.05%), meaning that it is good at not 

mistakenly identifying people who do not have the disease. The F-score and AUC (93.06%) are also very good, 

indicating that the model is well suited for this task. Overall, the decision tree model is a reliable choice for classifying 

people with and without Alzheimer’s disease. 

 

Figure 5: Classification Decision Tree display 

The decision tree in Figure 5 shows which factors are most important in predicting Alzheimer's disease. The factors 

at the top of the tree are the most significant predictors. These factors are likely to be strong indicators of the disease. 

In this specific decision tree, cognitive assessments and age seem to be particularly important. The tree also considers 

secondary factors, such as lifestyle and medical history. By tracing the decision paths from the top to the bottom of 

the tree, we can see how the model arrives at its final classifications for each individual. 
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3.3 Artificial Neural Networks Analysis: - 

This study employs multilayer feedforward neural networks to detect and classify Alzheimer's disease. The multilayer 

perceptron (MLP) neural networks are commonly trained using the backpropagation (BP) algorithm. The proposed 

multi-layer backpropagation neural network classifier consists of three layers: input, hidden, and output. The output 

layer's nodes correspond to the number of classes (dependent variables), while the number of hidden layer nodes is 

determined through trial and error. Each connection between neurons has an associated weight, which is adjusted 

during training based on the input and output data. The BP algorithm minimizes network errors using gradient methods 

or other numerical optimization techniques. 

Table 6: Confusion Matrix for FFNN Model 

A
ctu

a
l 

Predicted Value 

Total 
Disease No Disease 

Disease 522 238 760 

No Disease 115 1274 1389 

Table 6 can be used to calculate a number of performance metrics, including: 

Table 7 : Percentage results of the FFNN Model 

Metric Accuracy Precision Recall Specificity 
F1 

Score 

F2 

Score 

F3 

Score 
AUC 

FFNN 83.57 81.89 68.68 91.72 74.73 70.89 69.81 89.84 

 

Figure 6: ROC Curve (AUC) for FFNN model 

The results presented in Table 7 demonstrate the performance metrics of the FFNN model in classifying Alzheimer's 

disease. The FFNN model achieves good accuracy (83.57%) and commendable specificity (91.72%), as well as 

showing good precision (81.89%). However, its recall value of 68.68% indicates that the model has some limitations 

in identifying all actual positive cases of Alzheimer's disease. The F1 score reflects reasonable performance, while the 

F2 and F3 scores suggest adequate classification across different thresholds. With a high AUC in Figure6, the model 

shows strong overall performance, indicating its potential effectiveness for detecting and classifying Alzheimer's 

disease. This model can be considered a valuable tool in medical diagnostics, where accurately identifying cases is of 

utmost importance. 

The results in Table 7 illustrate the performance metrics of the FFNN model in classifying Alzheimer's disease. The 

FFNN model achieves good accuracy and excellent specificity, as well as showing commendable precision. 
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4. Discussion  

We evaluated the effectiveness of SVM, Decision Tree, and FFNN based on the metrics presented in Table 8 and 

Figure 7. 

Table 8: Percentage results of all models. 

Metric Accuracy Precision Recall Specificity 
F1 

Score 

F2 

Score 

F3 

Score 
AUC 

SVM linear 83.53 78.84 73.03 89.27 75.82 74.12 73.57 89.63 

SVM RBF 75.52 88.24 35.53 97.41 50.66 40.35 37.73 59.86 

Decision 
Tree 

96.32 94.63 95.0 97.05 94.81 94.93 94.96 93.06 

FFNN 83.57 81.89 68.68 91.72 74.73 70.89 69.81 89.84 

 

Figure 7: Compare results for all models 

Table 8 and Figure 7 show the performance metrics of the various models used to classify Alzheimer’s disease. The 

decision tree model appears to perform best, achieving high accuracy, precision, recall, and specificity. This indicates 

its exceptional ability to correctly identify true positives and true negatives, and reduce false positives and false 

negatives. While the SVM RBF model shows high precision and specificity, its low Accuracy, recall and AUC limit 

its practical application in medical diagnosis, where detecting all disease cases is critical. Although the SVM Linear 

and FFNN models provide moderate accuracy and precision, they lack recall compared to the decision tree. These 

models can be considered secondary options, especially in scenarios where low sensitivity is acceptable. 

5. Conclusion 

Alzheimer's is an incurable brain disease, and early detection helps families plan for the future. Using a number of 

machine learning models, we concluded that the decision tree model performs best across all metrics, making it the 

most reliable model for classifying Alzheimer's disease. Both the SVM Linear and FFANN models show good and 

balanced performance in terms of accuracy, precision, and recall, although they are lower than the decision tree results. 

The SVM RBF model, despite its strong accuracy, is weak in recall and lacks overall balance, which reduces its 

effectiveness in diagnosis. 

6. Recommendations: 

In the future, we could test this model on different Alzheimer's disease datasets. We could also try new ways machine 

learning to combine models to classify Alzheimer's disease. We could also use this model with other medical 

information, like brain scans and tests, to make it even better. 
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 الآلي: دراسة مقارنةتشخيص وتصنيف مرض الزهايمر باستخدام بعض نماذج التعلم 
 

 سامان حسين محمود
 أربيل، العراق-قسم الإحصاء والمعلوماتية، كلية الإدارة والاقتصاد، جامعة صلاح الدين

مرض الزهايمر في تلف الخلايا العصبية في الدماغ، مما يؤدي إلى فقدان الذاكرة. يعد التشخيص المبكر والدقيق للمرض أمرًا بالغ   يتسبب :الخلاصة
في   وجه التشابهالأهمية لتنفيذ التدابير الوقائية. ومع ذلك، فإن التمييز بين بيانات مرضى الزهايمر والبيانات الصحية لدى كبار السن أمر صعب بسبب أ

تصنيف  أنماط الدماغ وكثافتها، مما يعقد جهود الباحثين للتوصل إلى تشخيص دقيق. لذلك، يهدف البحث إلى استخدام التعلم الآلي لتحسين تشخيص و 
بيانات  (. تم تطبيق خوارزميات التصنيف على مجموعة  FFNN( وأشجار القرار والشبكات العصبية المغذية )SVMالمرض، مثل آلات الدعم المتجهة )

  F3ودرجة   F2ودرجة  F1حالة، وتم تقييم النماذج من خلال المقاييس )الدقة والإحكام والتذكر والخصوصية ودرجة  2149مرض الزهايمر، بما في ذلك 
محققًا درجات ع AUCو المقاييس،  يتفوق في جميع  القرار  إلى أن نموذج شجرة  النتائج، توصلنا  والحصول على  البيانات  تحليل  الدقة (.وبعد  الية في 
. إن قدرته على تحديد الإيجابيات والسلبيات %AUC  (94.96)و  ٪(،97.05٪(، والخصوصية )95٪(، والتذكر )94.63)  Precision٪(، و96.32)

المقابل، يوفر  الحقيقية بشكل صحيح، وتقليل الإيجابيات والسلبيات الكاذبة، يجعله النموذج الأكثر موثوقية لتصنيف حالات مرض الزهايمر بدقة. في  
٪(. 89.84٪ و89.63)AUC٪(، و91.72٪ و89.27٪(، والخصوصية )83.57٪ و83.53توازنًا جيدًا مع الدقة )  FFANNالخطي و  SVMنموذجا  

٪( مقارنة بشجرة القرار قد يؤدي إلى حالات إيجابية مفقودة، مما يجعلها أقل فعالية للتصنيف.  68.68٪ و73.03ومع ذلك، فإن تذكرهم المنخفض )
ازن العام، مما  هو الخيار الأقل فعالية، مع دقة عالية وخصوصية ولكن أداء ضعيف عبر جميع المقاييس الأخرى ويفتقر إلى التو   SVM RBFنموذج  

تصنيف مرض يؤدي إلى عدد كبير من النتائج السلبية الخاطئة.الاستنتاج: يتفوق نموذج شجرة القرار على النماذج الأخرى، مما يجعله الخيار الأفضل ل 
 .الزهايمر

 . هايمرمرض الز  التصنيف، آلات الدعم المتجهة، أشجار القرار، الشبكات العصبية الأمامية، الكلمات المفتاحية: 

 

 

 

 

 

 

 

 
 

 

 

 


