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1. Introduction

In the realm of statistical analysis, multivariate linear regression is a fundamental tool used to model the relationship
between a dependent variable and multiple independent variables. However, the presence of noise and outliers can
significantly distort the results, leading to inaccurate predictions and interpretations. This paper explores two advanced
techniques, wavelet shrinkage and the Hampel filter to mitigate these issues. The primary objective is to compare their
performance in enhancing the robustness of multivariate linear regression models. Multivariate linear regression has been
extensively studied, with numerous applications across various fields such as economics, biology, and engineering
(Montgomery et al., 2012). Despite its widespread use, the method is sensitive to noise and outliers, which can skew results
(Kutner et al., 2004).

An outlier is an observation that deviates so much from the other observations as to arouse suspicions that it was generated
by a different mechanism. Outliers are also referred to as abnormalities, discordant, deviants, or anomalies in the data mining
and statistics literature. In most applications, the data is created by one or more generating processes, which could either
reflect activity in the system or observations collected about entities. When the generating process behaves unusually, it
results in the creation of outliers. Therefore, an outlier often contains useful information about abnormal characteristics of
the systems and entities that impact the data generation process. The recognition of such unusual characteristics provides
useful application-specific insights (Aggarwal, 2017).

Wavelet shrinkage is a popular technique for handling outliers and noise in the analysis of multivariate linear regression
models. The method involves the use of wavelet transforms to decompose the data into different frequency bands, and then
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selectively shrinking or thresholding the wavelet coefficients to remove unwanted components. The key advantage of
wavelet shrinkage is its ability to preserve important localized features in the data, while effectively removing noise and
outliers. (Li et al., 2015)
A threshold might refer to a cut-off value above or below which data is considered an outlier or irrelevant. For example, in
outlier detection, any data point that lies beyond a certain threshold value may be considered an outlier. A threshold might
be applied to residuals to determine outliers. Points with residuals beyond a certain threshold might be considered
problematic or outliers. (Barnett & Lewis, 1994). The concept you're referring to, where a threshold is used as a cut-off
value in outlier detection, is a standard approach in statistical analysis and data preprocessing. This approach is often used
in techniques like z-score, interquartile range (IQR), and robust statistics such as the Hampel filter. (Aggarwal, 2013).
The Hampel filter is another approach for dealing with outliers in multivariate linear regression models. The Hampel filter
operates by replacing each data point with a robust estimate of the central tendency in a local neighbourhood, effectively
down-weighting or removing outliers. Unlike wavelet shrinkage, the Hampel filter does not require any data decomposition
and can be applied directly to the original data. (Hampel et al., 1986). Now, the Hampel filter is more like a no-nonsense
bouncer at a fancy club - it identifies and deals with outliers in your data. It's named after John R. Hampel, who had a keen
eye for spotting troublemakers in your dataset. The Hampel filter helps clean up your data by replacing outlier values with
more sensible ones, ensuring your regression model doesn't get thrown off by rowdy data points. (Hampel, 1974).
Wavelet shrinkage and Hampel filter are two fancy-sounding techniques that can help make sense of complex data in
multivariate linear regression models. They're like the cool cousins at the family reunion of statistical analysis methods.
Both wavelet shrinkage and the Hampel filter have been successfully applied to the analysis of multivariate linear regression
models (Tibshirani, 1996; Unser, 2002; Li et al., 2022; Li et al., 2015). While wavelet shrinkage can effectively remove
noise and preserve important localized features, the Hampel filter offers a more straightforward and computationally
efficient approach to outlier removal. (Li et al., 2022) Empirical studies have suggested that the performance of these two
methods may depend on the specific characteristics of the data and the underlying regression model. (Najafi & Hakim,
1992).
The primary aim of this research is to address the problem of outliers in multivariate regression model data, which can
severely impact the accuracy of estimated model parameters and lead to unacceptably large residuals. While traditional
methods like the Hampel filter are often employed to mitigate the influence of outliers, this paper explores a novel approach:
using wavelet shrinkage as a robust alternative for handling outliers. Specifically, the study investigates the performance of
various wavelet families (Coiflets, Daubechies, and Demy) combined with a universal threshold method and soft rule to
effectively reduce the impact of outliers. The research aims to answer the following key questions:
e Can wavelet shrinkage improve the accuracy of estimated parameters in multivariate regression models with outliers
compared to traditional methods such as the Hampel filter?
e How do different wavelet families (Coiflets, Daubechies, and Demy) perform in terms of their ability to handle outliers
and reduce the mean square error (MSE)?
o Is the proposed wavelet shrinkage filter method more efficient than the traditional Hampel filter in both simulated and
real-world datasets? The hypotheses of this research are:
HI1: The Wavelet Shrinkage filter provides more accurate parameter estimation in multivariate regression models with
outliers compared to the traditional Hampel filter.
H2: The Wavelet Shrinkage filter results in a lower Mean Squared Error (MSE) in the presence of outliers than the Hampel
filter.
H3: The performance of the Wavelet Shrinkage filter varies depending on the choice of wavelet family (Coiflets,
Daubechies, and Demy), but all outperform the Hampel filter.
Through comprehensive simulation and real data experiments, the paper demonstrated that the wavelet shrinkage filter
offers superior performance over the Hampel filter, leading to more accurate multivariate model parameter estimation and
better handling of outliers.

2. Methodology
2.1.  Multivariate Linear Regression Models

Multivariate regression is a statistical technique used to model the relationship between a dependent variable and multiple
independent variables (Omer et al., 2024). Unlike simple linear regression, which only considers a single predictor,
multivariate regression allows for a more comprehensive analysis encompassing multiple factors. This methodology is
crucial in numerous fields, including economics, medicine, and social sciences, where the outcome is often influenced by
several variables simultaneously (Tabachnick & Fidell, 2019). Despite its widespread applicability, multivariate regression
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is fraught with challenges. Multicollinearity, where independent variables are highly correlated, can distort the results.
Overfitting, where the model becomes too complex and tailored to the training data, reduces its predictive power on new
data. Additionally, the presence of outliers can significantly influence the regression coefficients, leading to biased results
(Montgomery et al., 2012). Before diving into the specifics of wavelet shrinkage and the Hampel filter, let's quickly touch
base on multivariate linear regression models. These models are like the bread and butter of regression analysis, allowing
us to understand the relationship between multiple input variables and an outcome of interest (Cook, 1977). They're the
workhorses of predictive analytics, helping us make sense of complex data relationships (Greene, 2018).
The multivariate regression model can be expressed mathematically as follows:

Y=XB+E 1)
Yin. Yz v Yw 1 X11 X12 o X1q1[Bor Boz - Bop el € ' e
y:21 y?z y?p _ 1 x:21 X22: X?q ,6’:11 ,6’12: [;’:lp + e:21 efz efp @
Var Ynz " Ynp 1 X1 Xpg o XnallByr Bgz B;m en1 Ens v Enp

Where Y (n x p) is the matrix of dependent variables, X [n X (q + 1)] is the matrix of independent variables, B[(q+ 1) % p]
is the matrix of coefficients, and E (n x p) is the matrix of error terms. Thus, each row of (Y) contains the values of the (p)
dependent variables measured on a subject. Each column of (Y) consists of the (n) observations on one of the (p) variables.
Regression Coefficients () Each coefficient represents the change in the dependent variable for a one-unit change in the
corresponding independent variable, holding all other variables constant (Hair, et al. 2010).

2.2.  Least Squares Estimation in the Multivariate Model

Least Squares Estimation (LSE) is a technique used to determine the coefficient matrix § that minimises the sum of squared
residuals, equivalent to E = Y — XB. The sum of squared residuals is S = tr(ETE) = [(Y — XB)T(Y — XB)] where tr
denotes the trace of a matrix (Huber, 1981; Omer et al., 2020). To minimise S, the derivative of S with respect to p is set to
zero. The least squares estimator for 3 is determined by solving for:

XTY = XTXB and B = (XTX)1XTY (3)

The properties of the least squares estimator include unbiasedness, minimum variance, and normality. The Gauss-Markov
theorem states that the least squares estimator has the minimum variance among all linearly unbiased estimators (Rencher
& Christensen, 2012).

2.3. Outlier Problem

An outlier problem in statistical analysis, particularly in multivariate regression models, is the existence of data points that
exhibit substantial deviation from the statistical pattern of the bulk of the data. Outliers can have a substantial impact on the
results of an analysis, leading to biased estimates, distorted model fits, and reduced predictive accuracy (Aggarwal, 2017).
The outlier problem's impact on regression analysis is one of its key points. Regression coefficients can be
disproportionately impacted by outliers, which might provide models that are inaccurate representations of the underlying
data patterns. This is especially troublesome for multivariate regression, which evaluates several variables' associations at
once (Hampel et al. 1986). Identification and Care, there are several ways to find outliers, statistical tests, robust estimating
approaches, and graphical tools like boxplots and scatterplots. Outliers can be dealt with after they are identified by
techniques like transformation, elimination, or the application of strong statistical techniques that lessen their influence
(Breunig, et al., 2000). Problems: It might be difficult to determine whether a data point is an outlier and how to manage it.
Outliers can reflect legitimate but exceptional events that are also indicative of flaws in data collection (Rousseeuw &
Leroy, 2003).

24. Handling Outliers

Robust regression techniques, such as M-estimators, least trimmed squares (LTS), and S-estimators, are less sensitive to
outliers than ordinary least squares (OLS) (Huber, 1981). Variable transformations, such as logarithmic, square root, and
Box-Cox transformations, can reduce the impact of outliers. Data cleaning is appropriate for outliers due to data entry or
measurement errors (Rousseeuw & Leroy, 2003). Winsor zing transforms outliers to the nearest value within a certain
percentile, reducing their impact without removing them. Imputation techniques replace outliers with estimated values based
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on remaining data (Montgomery et al. 2012). Robust standard errors provide more reliable standard errors for hypothesis
testing and confidence intervals. Bayesian methods incorporate prior information about data distribution and outliers,
providing a probabilistic framework for handling outliers (Kutner et al., 2004).

2.5. Hampel Filter

A statistical method for locating and lessening the effect of outliers in data is the Hampel filter. To find any outliers, it
compares each data point with its neighbours to see whether there is a substantial deviation (Hampel, 1974). This filter is
helpful for real-time signal processing and noise reduction because it works especially well on datasets where outliers have
the potential to skew the study. The main advantage of the Hampel filter is that it uses standard deviation and median rather
than the more conventional mean-based techniques, making it resistant to outliers. Regression models constructed with
reprocessed data are more reliable since this guarantees that the fundamental structure of the data is preserved. However,
the filter needs an adjustable window size, can be computationally intensive, particularly for large datasets, and may not be
as successful in datasets with non-symmetrical noise distribution. (Hampel et al., 1986). There are two parameters to
configure the Hampel filter:

2.5.1. Window Size (k)

The size of the moving window that is utilised to assess each data point is determined by this parameter. It establishes the
parameters that we use to search for outliers. The following sources and recommendations might help you choose the right
window size (Hampel et al., 1986). The window size k should be chosen based on the nature and the frequency of expected
outliers. A common heuristic is to set k around 3 to 5 times the expected width of an outlier. For periodic data, k should be
chosen based on the period length to accurately capture cyclic behaviour. The window size should account for the data's
sampling rate and periodic patterns (Pearson, 2002). If outliers are expected to last a specific duration, the window size should
be large enough to capture them effectively. Robustness vs. sensitivity can be achieved by using larger window sizes for
smoothing and reducing sensitivity to outliers, while smaller window sizes increase sensitivity to short-term outliers but may
lead to false positives due to noise. Adaptive window size can be beneficial in some cases, requiring more sophisticated
algorithms (Rousseeuw & Leroy, 2003).

2.5.2. Threshold

Selecting thresholds carefully is necessary to prevent useful data from being detected as outliers. The threshold establishes
the amount of deviation a data point must have from the median to qualify as an outlier (Rousseeuw & Leroy, 2003). Below
is a thorough breakdown of how to create thresholds in the Hampel filter, along with pertinent citations (Pearson, 2002).

2.5.3. Rules for Determining Thresholds
The median absolute deviation (MAD) is a statistical measure that measures the median of absolute deviations from the
data's median

MAD = median(|x; — median(x)|) 4)

It is used in the Hampel filter to set a threshold for outlier detection (Ali et al., 2021). The threshold is typically set as a
multiple of the MAD, with a factor of 3 to 3.5 times the MAD to align with the properties of the normal distribution

Threshold = t * MAD (5)

where t is the chosen threshold factor. A scaling factor, often 1.48261, is applied to the MAD to make it comparable to the
standard deviation for normally distributed data.

Threshold =t * 1.4826 x MAD (6)

A threshold factor (t) of 3 is commonly used, with higher sensitivity (lowering) and reduced sensitivity (raising). The
threshold factor can be adjusted based on the data's nature and application (Huber, 1981).

2.5.3.1. Experimental Data:
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e In controlled experimental settings, the data are often structured and may follow assumptions close to the normal
distribution. Hence, the threshold factor is typically set to 3 (i.e., t=3) to detect significant outliers while preserving most of
the core data.

e The scaling factor of 1.4826 is used to make MAD comparable to the standard deviation under the assumption of
normality, yielding the threshold as:

Threshold=3*1.4826*MAD
This method is chosen because the assumption of normality is valid, and the threshold aims to balance sensitivity with the
risk of marking valid data as outliers.
2.5.3.2. Real-World Data:
e Real-world data is often noisier and less likely to adhere to strict normality. The presence of non-Gaussian distributions
or heavy tails may require adjusting the threshold to increase or decrease sensitivity.
o A threshold factor t of 3 is still common, but it may be adjusted depending on the nature of the data:

Higher sensitivity (lowering the threshold) might involve setting t=2.5, capturing more potential outliers. Lower sensitivity
(raising the threshold) could mean increasing t to 3.5 or more to focus only on extreme outliers.

The method of threshold determination can depend on exploratory analysis, expert knowledge, or iterative fine-tuning based
on performance in outlier detection. In some cases, cross-validation or empirical testing may help define the optimal t for
specific real-world applications.

2.5.4. Hampel Identifier

The Hampel identifier is a variation of the three-sigma rule of statistics that is robust against outliers. Given a sequence
X1, X2, X3, ..., Xy and sliding window of length %, define point-to-point median and standard-deviation estimates using
(Hampel et al., 1986):

Local median = m; = median(x;_y, Xi_g41, Xi—k+2> - » Xis v » Xitk—2s Xivk—1r Xitk) 7
Standard deviation = gi = k, median(|x,_,, — m;|, ..., |Xiox — m;|) (8)
Where k = ——— ~ 1.4826 the quantity % is known as the median absolute deviation (MAD). If a sample x; is such

V2erf _1(%)
that |x; — m;| > n,o; for a given threshold n, then the Hampel identifier declares x; an outlier and replaces it with m;.
Near the sequence endpoints, the function truncates the window used to compute m; and o;.

m; = median(xq, Xy, Xz, o, Xiy ey Xigk—2, Xivk—1, Xizr) if i <k +1 9
And o; = k.median(|x; — mq|, ..., |x0 — m;])

m; = median(X;_y, Xi—k+1, Xici42s 0 Xis ever Xz Xp—1, Xp) If i >N — k (10)
And 0; = k.median(|x;_;, — my|, ..., |x, — my])

For expressions of the form erfinv(1-x), use the complementary inverse error function (erfcinv) instead. This substitution
maintains accuracy. When x is close to 1, then 1 - x is a small number and may be rounded down to 0. Instead, replace
erfinv(1-x) with erfcinv(x) (Pearson, 2002).

2.6. Wavelet

Wavelets refer to short-lived oscillations characterised by amplitudes that begin at zero, increase or decrease, and then return
to zero. Scientists have developed a taxonomy of wavelets based on their quantity and polarity.

2.6.1. Coiflets Wavelets
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Coiflets wavelets are a family of wavelets designed by Ingrid Daubechies and Ronald Coifman, known for their balance
between smoothness and compact support. They are orthogonal wavelets, with vanishing moments in both the scaling
function and wavelet function, making them suitable for approximating smooth signals. For Coiflets of order N, both
wavelet and scaling functions have N vanishing moments. They are nearly symmetric, minimising phase distortion in signal
processing (Nielson, 2001). Coiflets have compact support, making them efficient for computational purposes. They are
widely used in signal processing, image processing, feature extraction in machine learning, and pattern recognition. They
are used for denoising and compressing signals while preserving important features, image compression algorithms like
JPEG 2000, and feature extraction in machine learning and pattern recognition. Overall, Coiflets wavelets are highly useful
in signal processing and other applications due to their excellent time-frequency localisation and smoothness (Strang &
Nguyen, 1996). Coiflets wavelets are defined by a scaling function ¢(t) and a wavelet function y(t), which are related
through the refinement equation:

B0 = ) hp(2t =) (1D
V(O =) gep2e—k) (12)
Where hy and g are the filter coefficients related to the scaling and wavelet functions, respectively (Mallat, 1989).
2.6.2. Daubechies Wavelet (Db):

Normal orthogonal wavelets, named after Ingrid Daubechies, originated in 1988 and enabled discrete wavelet analysis.
They are named after her. The wavelet function's vanishing or ephemeral moments are represented by 4D and (Db), while
(N) is the candidate's length and (L) is the number of ephemeral moments. The second-ranked person in this family is L,
corresponding to N, L; = N /2 is a family of small waves of order n, with an anchor on the period [0, 2n-1]. Each wave has
n ephemeral moments, and analytes increase with rank.

d]
WIP(X)

The family has (rn) continuous derivatives, with a rank of about 0.2. The small wave is a member of this family.

2.6.3. Meyer Wavelet (Demy)

<o = fxf¢(x)dX=o,1ngn (13)

The Meyer wavelet is widely used in signal processing and data analysis, particularly in image processing and compression.
It is known for its smoothness and good localisation properties in both time and frequency domains. The wavelet is
constructed using a smooth function defined in the frequency domain, offering high smoothness for continuity and
differentiability. It is often used in conjunction with wavelets that do not have compact support. The Meyer wavelet also
allows multi-resolution analysis, a key feature of wavelet transforms. It is commonly used in areas like image denoising
and feature extraction (Guo et al., 2022). The Meyer wavelet's ability to balance time and frequency localisation makes it a
valuable tool in various analytical contexts. Many bivariate wavelet filters are used for the stationary two datasets, such as
the Meyer wavelet (demy) (Mustafa & Ali, 2013). The Meyer wavelet is defined using a function v(®) in the frequency
domain, where ® denotes the angular frequency. Meyer Wavelet Function y(®) in the Frequency Domain. The Meyer
wavelet is defined in the frequency domain by its Fourier transform 1) (w):

B = @) 7 e sin (5 v (o-lol ~1)) if 5 < ol o 14
tpa)—nesmzvznw lf3_w3 (14)
B(w) = (2 )—71% b4 3 1)) 47‘[<8T[ 15
Y(w) = (2n)2zez cos 217(4n|w| )lf3_3 (15)
- . 2w 8m
Y(w) =0 if e[—,— (16)
3°3
where v(o) is a smooth function defined as: v(w) =0 for w <0
-1 -1
v(w) = exp Fexp(m) for0o<w<landv(w)=1 for w=1 17
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This function v(w) ensures that the wavelet is smooth and has the desired properties in the Fourier domain. Meyer Wavelet

in the Time Domain: The inverse Fourier transform of 1)(w) gives the Meyer wavelet y(t) in the time domain. However,
the time-domain expression is generally not simple and is usually not provided in closed form due to the complexity of the
Fourier transform of the function defined above (Arts & van den Broek, 2022).

2.7. Shrinkage

Shrinkage, a sometimes-misinterpreted phrase, is the process of lowering sample sizes to minimise the impact of sampling
error. It is frequently employed in statistical methods, such as the Risk Metrics volatility estimator, a frequently used
instrument in this domain.

2.7.1. Universal Method

presented the formula (18) for the universal threshold approach:

8Y = Gyap /2 log(n) (18)

The wavelet coefficients of interest have a median absolute deviation of 0.6745, which indicates the standard error of the
estimate for them (Donoho & Johnstone, 1994).

2.7.2. Soft Rule

A soft threshold is a more lenient criterion for identifying outliers. It allows for a broader range of data points to be
considered as "potential outliers." Soft thresholds are often used when the aim is to detect outliers that might still be part of
the natural variability of the data, particularly in exploratory data analysis (Tukey, 1977). The Median Absolute Deviation
(MAD) is a robust measure of statistical dispersion. A soft threshold can be established by considering data points that
deviate from the median by a multiple of MAD. It is calculated as follows:

MAD = median(| Xi — median(X) |) (19)
Threshold Boundaries = median(X) + k * MAD (20)
Where k is a soft multiplier, often chosen as 1.5 or 2 for softer thresholds. Points outside this range are considered outliers.
The choice of k controls the softness of the threshold; smaller values of k allow more points to be classified as outliers
(Hampel, 1974).
2.8.  Mean Squared Error (MSE)
Mean Squared Error (MSE) is a metric used to assess the performance of filters, such as the Hampel filter and Wavelet

shrinkage. It quantifies the filter's ability to reduce noise and outliers in data by comparing the filtered data to the true or
expected values.

1 n
MSE=—>" (=9’ 1)
n i=1

where: y; are the true values, ¥; are the filtered values, and n is the number of data points (Hair et al., 2010). Mean Squared
Error (MSE) is a commonly used statistic to compare the efficacy of wavelet shrinkage and the Hampel filter approaches in
decreasing noise or outliers while maintaining the underlying structure of the data (Hampel et al., 1986).

2.9.  Proposed Filter

Wavelet shrinkage, which addresses data noise, was employed to address an outlier problem in the multivariate regression
model data by:
Step 1. Select the appropriate wavelet for the dependent variables data, such as (Coiflets, Daubechies, and Demy).
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Step 2. The data of the dependent variables and the selected wavelets the maximal overlap discrete wavelet transformation
coefficients are calculated.

Step 3. Choose the appropriate level to minimise the MSE of the estimated models.

Step 4. Choose the appropriate thresholding method to minimise the MSE of the estimated models such as the universal
threshold, and estimate the threshold parameter.

Step 5. Apply the soft threshold rule using the estimated universal threshold on the maximal overlap discrete wavelet
transformation coefficients by kill or keep.

Step 6. Calculate the inverse of the modified maximal overlap discrete wavelet transformation coefficients to obtain
denoised data and handle outliers.

Step 7. Estimation of parameters of a multivariate linear regression model based on filtered data.

3. Result
3.1. Simulation Study

For tackling outliers in the multivariate linear regression model data, in the context of comparing Wavelet Shrinkage and
the Hampel Filter, the objective could be to assess which method is more effective in handling outliers in multivariate linear
regression models. the random error of the model was generated with a multivariate normal distribution function, a zero-
mean vector, and a variance-covariance matrix E shown in Table 1. Different numbers of predictor (p=2 and 3) and response
variables (q=1, 2, 3, and 4) were used with different sample sizes (100, 150, and 200), the VVar-Covariance matrix are equals
to [123;212;3 2 1] and the regression coefficients (B) is equal to [2 4 6;4 3 5;3 6 4;3 5 2;6 4 2] if a setup might specify
(p=3 and g=4), and if (p=2, g=1) the Var-Covariance and the regression coefficients § matrix’s is given by [1 2; 2 1]; [2 4;
4 3] respectively, if (p=2, q=2) that the regression coefficients (B)=[2 4; 4 3; 3 6], Var-Covariance = [1 2; 2 1], also if (p=2,
q=3,4) the p=[2 4, 4 3; 3 6; 3 5]; [2 4 6;4 3 5] respectively, The generated data and applied to a multivariate linear model to
get the dependent variables. An estimation of the regression coefficients for the multivariate linear models was conducted
on the unfiltered data, followed by using the Hampel filter, and ultimately the wavelet filter (Coif5, Db20, Dmey). it is also
clear that the average of mean square estimation for simulation data for all methods as shown in Table 1, and compared
results turns out that Demy is better than them because it has the lowest variance in all possibilities after repeating the
process (1000) times. Utilizing the real data, the multivariate regression model was estimated employing five distinct
methodologies: Unfiltered, Hampel filter, Coif5, Db20, and Dmey wavelets filter. Each model was evaluated using the
Mean Squared Error (MSE), and Coif5 was determined to be the most appropriate model because of its lowest contrast. A
summary of the results is provided in Table 2.

Table (1) MSE Average for Simulation

. . . . Proposed Filter
P q Sample Siz Without Filt Hampel Filte %
Coif5 Db20 Dmey
100 77.6315 8.6193 3.9546 3.8576 1.7986
3 4 150 64.7112 9.4944 41733 3.9243 2.5106
200 57.4405 9.8111 4.2685 3.7678 3.0363
100 32.7052 10.5883 2.6059 1.6823 1.4390
2 1 150 25.1766 10.5329 1.9709 1.3124 1.2051
200 21.4125 10.5597 1.5711 1.0845 1.0347
100 32.8532 12.6988 2.0725 1.5688 0.9840
2 2 150 25.8104 12.6335 1.8926 1.4410 1.1152
200 21.4333 12.5082 1.7384 1.3446 1.1870
100 33.7146 15.0454 2.0677 1.8446 0.9291
2 3 150 25.7816 14.4695 2.1734 1.9365 1.2993
200 21.6743 14.3117 2.1327 1.8241 1.4848
100 34.1757 18.8092 2.2949 2.5301 1.0387
2 4 150 26.2801 17.6298 2.6838 2.6767 1.6847
200 21.9232 17.1362 2.6349 2.4709 1.9053
3 1 100 76.3679 37.3840 4.1852 2.5760 2.1220
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150 63.1671 37.3939 3.3297 2.1667 1.9587
200 56.5530 37.3239 2.8330 1.8678 1.8463
100 77.0316 40.3226 3.5111 2.6583 1.5928
3 2 150 63.6847 40.0397 3.3908 2.6994 1.9875
200 56.8063 39.8525 3.1639 2.4973 2.1666
100 77.2126 42.3117 3.6533 3.1400 1.6496
3 3 150 64.0612 42.2358 3.7357 3.2229 2.2489
200 56.7162 41.6745 3.5031 2.9545 2.4282
100 77.6315 47.3913 3.9546 3.8576 1.7986
3 4 150 64.7112 46.0795 4.1733 3.9243 2.5106
200 57.4405 9.8111 4.2685 3.7678 3.0363

Table 1 presents the effectiveness of different regression filtering methods across various settings, comparing the use of no
filter, Hampel Filter, and the three proposed filters Coif5, Db20, and Dmey. The data is organized by different combinations
of the number of predictors (p), the number of responses (q), and sample sizes (100, 150, and 200). For each configuration,
the table reports the Mean Squared Error (MSE) of the regression models. Generally, the "Without Filter" method shows
the highest MSE values across all configurations, indicating the least accuracy; Coif5 significantly enhances model
performance.

Figure 1 presents a comparison of filter performance by plotting the mean squared error (MSE) against the sample number.
It seems to have four different lines representing the performance of various filters. Here are the key details concerning a
sample size of 100. The x-axis represents the sample number, which ranges from 0 to 1000. If it were a sample size of 100,
we should focus only on the first 100 samples (from 0 to 100), The y-axis represents the Mean Squared Error, which is a
common metric used to evaluate the difference between predicted and true values in filtering or estimation processes. In
this plot, it ranges from 0 to 120. Each sample could be a data point where the filter's performance is being evaluated. The
y-axis represents the MSE values; higher values indicate worse performance, while lower values indicate better accuracy.
MSEH (The MSE of a Hampel filter (indicated by black circular markers) values are significantly higher and more variable
than the others, fluctuating widely between 40 and 100, suggesting this filter has higher error rates. MSEw1 (Red line) This
represents another filter or method's MSE values. It fluctuates a lot but remains relatively low compared to MSEH. MSEw2
(Blue line) Another filter's performance, showing even lower values than MSEw1. Finally, the MSEw3 (Green line) The
green line represents a filter with the lowest MSE values across the samples, indicating the best performance among the
shown methods. From the previous explanation for a sample size of 100, you would focus on the first segment of the plot,
which would likely show similar trends but over a smaller subset. The black circles (MSEH) would still fluctuate more than
the other MSE series, with more pronounced outliers compared to the smoother performance of MSEw1, MSEw2, and
MSEw3 among the three filters (MSEw1, MSEw2, MSEw3). MSEw3 is the best.

e Congpomon of Fl_tuv Parformance

—&—MSEH |
MSEw1|

Sample Number
Figure 1. Comparison of Filter Performance by using MSE for a sample size of 100
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Comparison of Filter Performance
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Figure 2. Comparison of Filter Performance by using MSE for a sample size of 150

Figure 2 shows the efficiency of the proposed method and its superiority over the traditional method at a sample size of
150.

Comparison of Filter Performance
X - -

0 100 200 200 400 500 600 700 800 00 1000
Sample Number

Figure 3. Comparison of Filter Performance by using MSE for a sample size of 200

Figure 3 shows the efficiency of the proposed method and its superiority over the traditional method at a sample size of
200.

3.2.  Real Data
The real data from (Rencher, 2012) represent blood glucose measurements on three occasions (fasting). The multivariate

regression model was estimated by the five methods (Without the filter, Hampel filter, and Coif5, Db20, and Dmey wavelets
filter) with the MSE calculated for each model and the results are summarized in Table 2.
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The results evaluate the effectiveness of various regression filtering methods by comparing their coefficients and Mean
Squared Error (MSE). The "Without Filter" method yields the highest MSE of 1676.7000, indicating a poor model fit and
high prediction error. Its regression coefficients show considerable variability, with large differences in the impact of
predictors. In contrast, the Hampel Filter, designed to mitigate the effect of outliers, achieves a lower MSE of 208.0334 and
offers more stable coefficient estimates, but it still does not match the performance of the proposed filters. Among the
proposed filters, the Coif5 filter stands out with the lowest MSE of 7.9213, reflecting the best model accuracy and precision.
This method produces the most consistent regression coefficients, demonstrating the highest effectiveness in reducing error.
The Db20 filter also performs well, with a notable MSE of 46.4108, but it is less effective than Coif5. The Dmey filter, with
an MSE of 13.2069, provides a balance between error reduction and coefficient stability. Overall, the proposed filters,
especially Coif5, significantly outperform both the Hampel Filter and the "Without Filter" method, highlighting their
superior capability in enhancing regression model performance.

Table (2) Regression Coefficients and MSE for Real Data

Methods Regression Coefficients MSE
47.2961 25.0896 32.5241
. . 0.5773 0.0583 0.5938
Without Filter 20,1858 0.7636 70.3520 1676.7000
0.4854 0.2554 0.8311
90.0219 66.1235 80.2017
. -0.0500 0.2773 0.1462
Hampel Filter 0.1816 02237 20,0369 208.0334
0.1761 -0.0363 0.2810
105.3209 105.0360 118.4777
Proposed Filter 0.0525 -0.0279 -0.0204 79213
Coif5 0.0178 0.0269 -0.0717
0.0056 -0.0051 -0.0116
104.4113 104.8545 131.5511
Proposed Filter 0.0066 0.0233 0.0698 46.4108
Db20 0.0673 -0.0202 -0.2788 '
0.0080 -0.0170 -0.0742
108.6301 102.5845 120.3460
Proposed Filter -0.0129 -0.0166 0.0426 13.2069
Dmey 0.0244 0.0296 -0.1224 '
0.0140 0.0130 -0.0465

From Figure 4, summing up the figure which provides the residuals of the multivariate regression model for each of the
responses (Y1, Y2, and ys) without using any filter, the range of the residuals for the three models lies between £50. This
range is notably wide compared to the residuals obtained using other filtering methods. The residuals for y; exhibit the
largest errors and most significant outliers, while y,and ys display relatively smaller residuals with fewer outliers. y3 shows
the most balanced residuals, though there are still some isolated deviations. These patterns suggest that the regression model
for y1 may need the most refinement or outlier handling. Or Residuals for y; (Top Plot), several large residuals, with some
extreme values reaching close to £50. This suggests significant model errors or potential outliers in the data. Residuals for
y2 (Middle Plot) are moderate residuals compared to y;, with some points still deviating significantly from zero. Fewer
extreme values, but still, some outliers are present. Residuals for ys; (Bottom Plot) are relatively more balanced residuals
with smaller deviations compared to the other plots. A few observations still show significant errors, especially around
observations 20 and 40.
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Figure (5) Residuals of Multivariate Regression Model for Hampel and Coif5 filter data

From Figure 5, when combining the residuals from the multivariate regression model for each response variable (y1, y2, and
ys3) with the Hampel and Coif5 filters, the results show that for the Hampel filter, the residuals range from +20 for all models.
Similarly, the Coif5 filter's residuals range from (2 to -4) for yi;, +2 for y,, and finally (4 to -2) for ys. This range is
considerably less than the residuals obtained by using no filter.
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Figure 6. Residuals of Multivariate Regression Model for Db20 and Dmey filter data

From Figure 6, when aggregating the residuals from the multivariate regression model for each response variable (y1, yo,
and ys) with the Db20 and Dmey filters applied, for the Db20, the residuals fall within a range of +2 for (y1 and y) and 10
for (ys). And for the Dmey filter, also the residuals fall within a range of +2 for (y; and y») and (-5 to 10) for (y3). This range
is notably wide compared to the residuals obtained using other filtering methods.

4. Conclusions

In conclusion, the evaluation of various regression filtering methods reveals significant differences in their effectiveness.
Using no filter demonstrates the highest Mean Squared Error (MSE), indicating a poor fit and high prediction errors, with
considerable variability in regression coefficients. The Hampel Filter improves performance by reducing MSE and
stabilizing coefficients, but falls short compared to the proposed filters. Among these, the Coif5 filter proves to be the most
effective, achieving the lowest MSE and most consistent coefficients, thereby offering superior accuracy and precision. The
Db20 filter also shows strong performance with a relatively low MSE, though it is less effective than Coif5. The Dmey
filter strikes a balance between reducing error and maintaining coefficient stability. Overall, the proposed filters, particularly
Coif5, significantly enhance regression model performance, surpassing both the Hampel Filter and the no filter.

5. Recommendations

Based on the evaluation of regression filtering methods, it is recommended to utilize the Coif5 filter for its outstanding
performance, as it achieves the lowest Mean Squared Error (MSE) and the most consistent regression coefficients, thereby
offering the highest accuracy and precision. When a slightly less optimal but still effective alternative is needed, the Db20
filter is a suitable choice due to its relatively low MSE. The Dmey filter is also a good option for balancing error reduction
with coefficient stability. It is advisable to avoid the "Without Filter" method due to its high MSE and variability in
coefficients, and while the Hampel Filter provides some improvement over no filtering, it does not match the effectiveness
of the proposed filters. Implementing these recommendations will enhance the accuracy and reliability of regression models.

References

1. Aggarwal, C. C. (2017). Outlier Analysis (2nd ed.). Springer. https:/link.springer.com/book/10.1007/978-3-319-47578-
3

2. Arts, L. P. A. & van den Broek, E. L. (2022). The fast continuous wavelet transformation (FCWT) for real-time, high-
quality, noise-resistant time-frequency analysis. Nature Computational Science. https://www.nature.com/articles/s43588-
021-00183-z

13


https://link.springer.com/book/10.1007/978-3-319-47578-3
https://link.springer.com/book/10.1007/978-3-319-47578-3
https://www.nature.com/articles/s43588-021-00183-z
https://www.nature.com/articles/s43588-021-00183-z

Iragi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (1-16)

3. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3rd ed.). New York: Wiley.
https://www.amazon.com/Outliers-Statistical-Data-V-Barnett/dp/0471930946

4. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 93-104). LOF:
identifying density-based local outliers

5. Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15-18..
https://doi.org/10.1080/00401706.1977.10489493

6. Donoho, D. L., & Johnstone, I. M. (1994). Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 81(3), 425-455.
https://doi.org/10.1093/biomet/81.3.425

7. Greene, W. H. (2018). Econometric Analysis (8th ed.). Pearson. Econometric Analysis - VitalSource

8. Guo, T., Zhang, T., Lim, E., Lopez-Benitez, M., Ma, F., & Yu, L. (2022). A review of wavelet analysis and its
applications: Challenges and opportunities. IEEe Access, 10, 58869-58903.
https://ieeexplore.ieee.org/abstract/document/9785993/

9. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: Global edition. Multivariate
Data Analysis(Internet Archive)

10.Hampel, F. R. (1974). The Influence Curve and its Role in Robust Estimation. Journal of the American Statistical
Association, 69(346), 383-393. https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962

11.Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust Statistics: The Approach Based on
Influence Functions. New York: Wiley. http://dx.doi.org/10.1002/9781118186435

12.Huber, P. J, & Ronchetti, E. M. (1981). Robust statistics john wiley & sons. New York, 1(1).
https://onlinelibrary.wiley.com/doi/book/10.1002/0471725250

13.Kutner, M. H., Nachtsheim, C. J.,, & Neter, J. (2004). Applied Linear Regression Models. McGraw-Hill.
https://thuvienso.hoasen.edu.vn/handle/123456789/9564

14.Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2015). Feature Selection: A Data
Perspective. ACM Computing Surveys, 50(6), Article 94. https://doi.org/10.1145/3136625

15.Li, J., Liu, M., Li, X., & Wang, S. (2022). A Comprehensive Review on Outlier Detection with Data Imputation
Techniques. Information Sciences, 610, 222-245. https://doi.org/10.1145/3645108

16.Mallat, S. (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 11(7), 674-693. https://ieeexplore.ieee.org/abstract/document/192463/

17.Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis 5" ed. Introduction
to Linear Regression Analysis

18.Mustafa, Q., & Ali, T. H. (2013). COMPARING THE BOX-JENKINS MODELS BEFORE AND AFTER THE
WAVELET FILTERING IN TERMS OF REDUCING THE ORDERS WITH APPLICATION. Journal of Concrete &
Applicable Mathematics, 11(2). (DPU Online)(University of Zakho)

19.Najafi, M., & Hakim, A. (1992). Robust Estimation and Outlier Detection in Multivariate Data. Communications in
Statistics - Theory and Methods, 21(5), 1495-1509.

20.Nielsen, M. (2001). On the construction and frequency localization of finite orthogonal quadrature filters. Journal of
Approximation Theory, 108(1), 36-52. https://doi.org/10.1006/jath.2000.3514

21.0mar, C., & Ali, T. H., Hassn, K. (2020). Using Bayes weights to remedy the heterogeneity problem of random error
variance in linear models. Iraqgi Journal of Statistical Sciences, 17(2), 58-67. DOI: 10.33899/igj0ss.2020.167391

22.0mer, A. W., Sedeeq, B. S., & Ali, T. H. (2024). A proposed hybrid method for Multivariate Linear Regression Model
and Multivariate Wavelets (Simulation study). Polytechnic Journal of Humanities and Social Sciences, 5(1), 112-124.
https://journals.epu.edu.ig/index.php/ptjhss/article/view/1452

23.Pearson, R. K. (2002). Outliers in Process Modeling and ldentification. IEEE Transactions on Control Systems
Technology, 10(1), 55-63. https://doi.org/10.1109/87.974338

24.Rencher, A.C. and Christensen, W.F. (2012). Wiley Series in Probability and Statistics. In Methods of Multivariate
Analysis (eds A.C. Rencher and W.F. Christensen). https://doi.org/10.1002/9781118391686.scard

25.Rousseeuw, P. J., & Leroy, A. M. (2003). Robust Regression and Outlier Detection. Wiley.. Robust regression and outlier
detection

26.Strang, G., & Nguyen, T. (1996). Wavelets and Filter Banks. Wellesley-Cambridge Press.
https://books.google.ig/books?id=Z76N_Ab5pp8C&source=gbs_navlinks_s

27.Tabachnick, B. G., & Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Pearson. Pearson Higher Ed
(PearsonHigherEd)

28.Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series
B (Methodological), 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

14


https://www.amazon.com/Outliers-Statistical-Data-V-Barnett/dp/0471930946
https://dl.acm.org/doi/abs/10.1145/342009.335388
https://dl.acm.org/doi/abs/10.1145/342009.335388
https://doi.org/10.1080/00401706.1977.10489493
https://doi.org/10.1093/biomet/81.3.425
https://www.vitalsource.com/products/econometric-analysis-william-h-greene-v9780134461403
https://ieeexplore.ieee.org/abstract/document/9785993/
https://archive.org/details/multivariatedata0000jose_n6n3
https://archive.org/details/multivariatedata0000jose_n6n3
https://archive.org/details/multivariatedata0000jose_n6n3
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
http://dx.doi.org/10.1002/9781118186435
https://onlinelibrary.wiley.com/doi/book/10.1002/0471725250
https://thuvienso.hoasen.edu.vn/handle/123456789/9564
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3645108
https://ieeexplore.ieee.org/abstract/document/192463/
https://books.google.com/books?id=lSyiRZh09oEC&printsec=frontcover&dq=1.%09Montgomery,+D.+C.,+Peck,+E.+A.,+%26+Vining,+G.+G.+(2012).+Introduction+to+linear+regression+analysis+5th+ed.&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi6lpj67LCIAxWTnf0HHWOaJaMQ6AF6BAgIEAI
https://books.google.com/books?id=lSyiRZh09oEC&printsec=frontcover&dq=1.%09Montgomery,+D.+C.,+Peck,+E.+A.,+%26+Vining,+G.+G.+(2012).+Introduction+to+linear+regression+analysis+5th+ed.&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi6lpj67LCIAxWTnf0HHWOaJaMQ6AF6BAgIEAI
https://apps.dpu.edu.krd/staffportal/pages/profile/?staff_id=MzE5
https://sjuoz.uoz.edu.krd/index.php/sjuoz/article/view/1304
https://doi.org/10.1006/jath.2000.3514
https://doi.org/10.33899/iqjoss.2020.167391
https://journals.epu.edu.iq/index.php/ptjhss/article/view/1452
https://doi.org/10.1109/87.974338
https://doi.org/10.1002/9781118391686.scard
https://books.google.com/books?hl=en&lr=&id=woaH_73s-MwC&oi=fnd&pg=PR13&dq=Rousseeuw,+P.+J.,+%26+Leroy,+A.+M.+(2003).+Robust+Regression+and+Outlier+Detection.+Wiley.+++&ots=TDnLR_zeiO&sig=Cu-W3arSc77J1rDj0KQS9W1tpZ4
https://books.google.com/books?hl=en&lr=&id=woaH_73s-MwC&oi=fnd&pg=PR13&dq=Rousseeuw,+P.+J.,+%26+Leroy,+A.+M.+(2003).+Robust+Regression+and+Outlier+Detection.+Wiley.+++&ots=TDnLR_zeiO&sig=Cu-W3arSc77J1rDj0KQS9W1tpZ4
https://books.google.iq/books?id=Z76N_Ab5pp8C&source=gbs_navlinks_s
https://www.pearsonhighered.com/assets/preface/0/1/3/4/0134790545.pdf
https://www.pearsonhighered.com/assets/preface/0/1/3/4/0134790545.pdf
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Iragi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (1-16)

29.Tukey, J. W. (1977). Exploratory data analysis. Reading/Addison-Wesley. https:/link.springer.com/content/
pdf/10.1007/978-3-031-20719-8 2?pdf=chapter%20toc

30.Unser, M. (2002). Sampling—50 Years After Shannon. Proceedings of the IEEE, 90(5), 742-765.
https://doi.org/10.1109/TAC.2002.1000281

Appendix
cle
clear all
n=200;0=4; p =3;beta=[2 4 6;4 3 5;3 6 4;3 5 2;6 4 2]; randn('seed’,1234);
for j=1:1000

x=randn(n,q); E=randn(n,p)*[1 2 3;2 1 2;3 2 1]; X=[ones(n,1) x];
yc= X*beta+E;yc(10,1)=35;yc(15,2)=-30;yc(10,3)=-35;
% without filter
[betah sigma Eh ¢ logl]=mvregress(X,yc); Ehc=yc-X*betah; EhpEhc=Ehc™*Ehc;
MSE(j)=trace(EhpEhc)/(n-g-1);
% Classical Hampel Filter
[yCC.,i,xmedian,xsigma] = hampel(yc,50,3); [betah sigma Eh c logl]=mvregress(X,yCC);
EhCC=yCC-X*betah; EhpEhCC=EhCC*EhCC; MSEH(j)=trace(EhpEhCC)/(n-g-1);
% Wavelet Coif5 Filter
ywl1= wdenoise(yc,6,'Wavelet','coif5', 'DenoisingMethod','universal’, ThresholdRule','soft");
[betawl sigma Eh ¢ logl]=mvregress(X,yw1); Ehwl=ywl-X*betawl; Ewl=Ehwl*Ehw];
MSEw1(j)=trace(Ew1)/(n-g-1);
% Wavelet Db2 Filter
yw2= wdenoise(yc,6,'Wavelet','Db20'", 'DenoisingMethod','universal’, ThresholdRule','soft');
[betaw2 sigma Eh c logl]=mvregress(X,yw2); Ehw2=yw2-X*betaw2; Ew2=Ehw2*Ehw2;
MSEw2(j)=trace(Ew2)/(n-g-1);
% Wavelet Dmey Filter
yw3= wdenoise(yc,6,'Wavelet','dmey’, 'DenoisingMethod’,'universal’, ThresholdRule','soft");
[betaw3 sigma Eh c logl]=mvregress(X,yw3); Ehw3=yw3-X*betaw3; Ew3=Ehw3*Ehw3;
MSEw3(j)=trace(Ew3)/(n-g-1);
end
MMSE=mean(MSE), MMSEH=mean(MSEH), MMSEw1=mean(MSEw1)
MMSEw2=mean(MSEw2), MMSEw3=mean(MSEw3)

15


https://link.springer.com/content/%20pdf/10.1007/978-3-031-20719-8_2?pdf=chapter%20toc
https://link.springer.com/content/%20pdf/10.1007/978-3-031-20719-8_2?pdf=chapter%20toc
https://doi.org/10.1109/TAC.2002.1000281

Iragi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (1-16)

Ciial) 2t () Jaai¥) gilad Julad B Jasalty asall Qe gdize c 4 lRa)

‘.AQ O a2 ¢ s “rb Q);I-Ail
.G8hadl cd:\:\‘)\ ¢ ol CN—AA daala colaid¥lg 5ylay) LS (ddlasleally slanl) pndd

i 5 g ad ) (63505 7 d9all 50aall cilaleall B8y e 5 culpriall daeie el jlaaiV1 2 3sas cilily 8 53LAN il dgag o sAuadA)
e Caalagi Candl 138 = ik - (Aan) GIHLI ans aladial ) s3LA0 aal dadleal Jaels celine @lll 8 Lay cctladipall (lans paies ol L Algsae
Coiflets, Daubechies, Demy) cilagall aladinl ol paiall daxtia A jlasiV) ~3gas calily 8 83L& andl) A< dalled]  aoigall aaladl)

¢ 2 T < ™
2l (Jaels i pe) Aol Aty Lo lie Cad (oamsall (raliill i je) da giiall A ylal) 50S proagil L dac i) sac il dlelill dsiall 4i

T = D 2 T - o= &) oale
Oadil) pdye dih of Fll codl ey HLall MATLAB  maliy aladiul o5 dgidal) clibally sSaall DA e aaiill Uadl) bacigia Jhee
caala e Al (pe 380 ST i) 2ot 7 3sad lales o Jgaantly 53N wil) A Aallae 3 Dol iyl (ge 30l AST S gl
Adia) adady ¢ agall Gl cJuald zdipe BILEN al) (ol piiall aaxia adll laadV) # 3l rdalidal) clalsl]

16



