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 The presence of outliers in the data of a multivariate regression model affects the 

accuracy of the estimated model parameters and leads to unacceptably large residual 

values. Therefore, some filters, including the Hempel filter, are usually used to handle 

outliers (or use some robust method). This paper proposes to employ wavelet shrinkage 

to address the problem of outliers in multivariate regression model data by using 

wavelets (Coiflets, Daubechies, and Demy) with a universal threshold method and soft 

rule. To illustrate the efficiency of the proposed method (Wavelet Shrinkage filter) was 

compared with the traditional method (Hampel filter) based on the mean square error 

criterion through simulation and real data. A program has been designed in MATLAB 

to do this. The results proved that the Wavelet shrinkage filter method was more 

efficient than the traditional method in dealing with the outlier problem and obtaining 

more accurate multivariate model parameters than the Hampel filter method.  
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1. Introduction 

In the realm of statistical analysis, multivariate linear regression is a fundamental tool used to model the relationship 

between a dependent variable and multiple independent variables. However, the presence of noise and outliers can 

significantly distort the results, leading to inaccurate predictions and interpretations. This paper explores two advanced 

techniques, wavelet shrinkage and the Hampel filter to mitigate these issues. The primary objective is to compare their 

performance in enhancing the robustness of multivariate linear regression models. Multivariate linear regression has been 

extensively studied, with numerous applications across various fields such as economics, biology, and engineering 

(Montgomery et al., 2012). Despite its widespread use, the method is sensitive to noise and outliers, which can skew results 

(Kutner et al., 2004). 

An outlier is an observation that deviates so much from the other observations as to arouse suspicions that it was generated 

by a different mechanism. Outliers are also referred to as abnormalities, discordant, deviants, or anomalies in the data mining 

and statistics literature. In most applications, the data is created by one or more generating processes, which could either 

reflect activity in the system or observations collected about entities. When the generating process behaves unusually, it 

results in the creation of outliers. Therefore, an outlier often contains useful information about abnormal characteristics of 

the systems and entities that impact the data generation process. The recognition of such unusual characteristics provides 

useful application-specific insights (Aggarwal, 2017). 

Wavelet shrinkage is a popular technique for handling outliers and noise in the analysis of multivariate linear regression 

models. The method involves the use of wavelet transforms to decompose the data into different frequency bands, and then 
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selectively shrinking or thresholding the wavelet coefficients to remove unwanted components. The key advantage of 

wavelet shrinkage is its ability to preserve important localized features in the data, while effectively removing noise and 

outliers. (Li et al., 2015) 

A threshold might refer to a cut-off value above or below which data is considered an outlier or irrelevant. For example, in 

outlier detection, any data point that lies beyond a certain threshold value may be considered an outlier. A threshold might 

be applied to residuals to determine outliers. Points with residuals beyond a certain threshold might be considered 

problematic or outliers. (Barnett & Lewis, 1994). The concept you're referring to, where a threshold is used as a cut-off 

value in outlier detection, is a standard approach in statistical analysis and data preprocessing. This approach is often used 

in techniques like z-score, interquartile range (IQR), and robust statistics such as the Hampel filter. (Aggarwal, 2013). 

The Hampel filter is another approach for dealing with outliers in multivariate linear regression models. The Hampel filter 

operates by replacing each data point with a robust estimate of the central tendency in a local neighbourhood, effectively 

down-weighting or removing outliers. Unlike wavelet shrinkage, the Hampel filter does not require any data decomposition 

and can be applied directly to the original data. (Hampel et al., 1986). Now, the Hampel filter is more like a no-nonsense 

bouncer at a fancy club - it identifies and deals with outliers in your data. It's named after John R. Hampel, who had a keen 

eye for spotting troublemakers in your dataset. The Hampel filter helps clean up your data by replacing outlier values with 

more sensible ones, ensuring your regression model doesn't get thrown off by rowdy data points. (Hampel, 1974). 

Wavelet shrinkage and Hampel filter are two fancy-sounding techniques that can help make sense of complex data in 

multivariate linear regression models. They're like the cool cousins at the family reunion of statistical analysis methods. 

Both wavelet shrinkage and the Hampel filter have been successfully applied to the analysis of multivariate linear regression 

models (Tibshirani, 1996; Unser, 2002; Li et al., 2022; Li et al., 2015). While wavelet shrinkage can effectively remove 

noise and preserve important localized features, the Hampel filter offers a more straightforward and computationally 

efficient approach to outlier removal. (Li et al., 2022) Empirical studies have suggested that the performance of these two 

methods may depend on the specific characteristics of the data and the underlying regression model. (Najafi & Hakim, 

1992). 

 

 

 

2. Methodology 

 

2.1. Multivariate Linear Regression Models 
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estimated

3. Result 

 

For tackling outliers in the multivariate linear regression model data, in the context of comparing Wavelet Shrinkage and 

the Hampel Filter, the objective could be to assess which method is more effective in handling outliers in multivariate linear 

regression models. the random error of the model was generated with a multivariate normal distribution function, a zero-

mean vector, and a variance-covariance matrix E shown in Table 1. Different numbers of predictor (p=2 and 3) and response 

variables (q=1, 2, 3, and 4) were used with different sample sizes (100, 150, and 200), the Var-Covariance matrix are equals 

to [1 2 3;2 1 2;3 2 1] and the regression coefficients (β) is equal to [2 4 6;4 3 5;3 6 4;3 5 2;6 4 2] if a setup might specify 

(p=3 and q=4), and if (p=2, q=1) the Var-Covariance and the regression coefficients β matrix’s is given by [1 2; 2 1]; [2 4; 

4 3] respectively, if (p=2, q=2) that the regression coefficients (β)=[2 4; 4 3; 3 6], Var-Covariance = [1 2; 2 1], also if (p=2, 

q=3,4) the β=[2 4; 4 3; 3 6; 3 5]; [2 4 6;4 3 5] respectively, The generated data and applied to a multivariate linear model to 

get the dependent variables. An estimation of the regression coefficients for the multivariate linear models was conducted 

on the unfiltered data, followed by using the Hampel filter, and ultimately the wavelet filter (Coif5, Db20, Dmey). it is also 

clear that the average of mean square estimation for simulation data for all methods as shown in Table 1, and compared 

results turns out that Demy is better than them because it has the lowest variance in all possibilities after repeating the 

process (1000) times. Utilizing the real data, the multivariate regression model was estimated employing five distinct 

methodologies: Unfiltered, Hampel filter, Coif5, Db20, and Dmey wavelets filter. Each model was evaluated using the 

Mean Squared Error (MSE), and Coif5 was determined to be the most appropriate model because of its lowest contrast. A 

summary of the results is provided in Table 2. 

Table (1) MSE Average for Simulation 

p q       Sample Size     Without Filter    Hampel Filter 
Proposed Filter 

     Coif5      Db20 Dmey 

3 4 

100 77.6315 8.6193 3.9546 3.8576 1.7986 

150 64.7112 9.4944 4.1733 3.9243 2.5106 

200 57.4405 9.8111 4.2685 3.7678 3.0363 

2 1 

100 32.7052 10.5883 2.6059 1.6823 1.4390 

150 25.1766 10.5329 1.9709 1.3124 1.2051 

200 21.4125 10.5597 1.5711 1.0845 1.0347 

2 2 

100 32.8532 12.6988 2.0725 1.5688 0.9840 

150 25.8104 12.6335 1.8926 1.4410 1.1152 

200 21.4333 12.5082 1.7384 1.3446 1.1870 

2 3 

100 33.7146 15.0454 2.0677 1.8446 0.9291 

150 25.7816 14.4695 2.1734 1.9365 1.2993 

200 21.6743 14.3117 2.1327 1.8241 1.4848 

2 4 

100 34.1757 18.8092 2.2949 2.5301 1.0387 

150 26.2801 17.6298 2.6838 2.6767 1.6847 

200 21.9232 17.1362 2.6349 2.4709 1.9053 

3 1 100 76.3679 37.3840 4.1852 2.5760 2.1220 
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150 63.1671 37.3939 3.3297 2.1667 1.9587 

200 56.5530 37.3239 2.8330 1.8678 1.8463 

3 2 

100 77.0316 40.3226 3.5111 2.6583 1.5928 

150 63.6847 40.0397 3.3908 2.6994 1.9875 

200 56.8063 39.8525 3.1639 2.4973 2.1666 

3 3 

100 77.2126 42.3117 3.6533 3.1400 1.6496 

150 64.0612 42.2358 3.7357 3.2229 2.2489 

200 56.7162 41.6745 3.5031 2.9545 2.4282 

3 4 

100 77.6315 47.3913 3.9546 3.8576 1.7986 

150 64.7112 46.0795 4.1733 3.9243 2.5106 

200 57.4405 9.8111 4.2685 3.7678 3.0363 

Table 1 presents the effectiveness of different regression filtering methods across various settings, comparing the use of no 

filter, Hampel Filter, and the three proposed filters Coif5, Db20, and Dmey. The data is organized by different combinations 

of the number of predictors (p), the number of responses (q), and sample sizes (100, 150, and 200). For each configuration, 

the table reports the Mean Squared Error (MSE) of the regression models. Generally, the "Without Filter" method shows 

the highest MSE values across all configurations, indicating the least accuracy; Coif5 significantly enhances model 

performance. 

Figure 1 presents a comparison of filter performance by plotting the mean squared error (MSE) against the sample number. 

It seems to have four different lines representing the performance of various filters. Here are the key details concerning a 

sample size of 100. The x-axis represents the sample number, which ranges from 0 to 1000. If it were a sample size of 100, 

we should focus only on the first 100 samples (from 0 to 100), The y-axis represents the Mean Squared Error, which is a 

common metric used to evaluate the difference between predicted and true values in filtering or estimation processes. In 

this plot, it ranges from 0 to 120. Each sample could be a data point where the filter's performance is being evaluated. The 

y-axis represents the MSE values; higher values indicate worse performance, while lower values indicate better accuracy. 

MSEH (The MSE of a Hampel filter (indicated by black circular markers) values are significantly higher and more variable 

than the others, fluctuating widely between 40 and 100, suggesting this filter has higher error rates. MSEw1 (Red line) This 

represents another filter or method's MSE values. It fluctuates a lot but remains relatively low compared to MSEH. MSEw2 

(Blue line) Another filter's performance, showing even lower values than MSEw1. Finally, the MSEw3 (Green line) The 

green line represents a filter with the lowest MSE values across the samples, indicating the best performance among the 

shown methods. From the previous explanation for a sample size of 100, you would focus on the first segment of the plot, 

which would likely show similar trends but over a smaller subset. The black circles (MSEH) would still fluctuate more than 

the other MSE series, with more pronounced outliers compared to the smoother performance of MSEw1, MSEw2, and 

MSEw3 among the three filters (MSEw1, MSEw2, MSEw3). MSEw3 is the best. 

 

 
Figure 1. Comparison of Filter Performance by using MSE for a sample size of 100  
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Figure 2. Comparison of Filter Performance by using MSE for a sample size of 150 

 

Figure 2 shows the efficiency of the proposed method and its superiority over the traditional method at a sample size of 

150. 

 
Figure 3. Comparison of Filter Performance by using MSE for a sample size of 200  

Figure 3 shows the efficiency of the proposed method and its superiority over the traditional method at a sample size of 

200. 

3.2. Real Data 

 

The real data from (Rencher, 2012) represent blood glucose measurements on three occasions (fasting). The multivariate 

regression model was estimated by the five methods (Without the filter, Hampel filter, and Coif5, Db20, and Dmey wavelets 

filter) with the MSE calculated for each model and the results are summarized in Table 2. 
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The results evaluate the effectiveness of various regression filtering methods by comparing their coefficients and Mean 

Squared Error (MSE). The "Without Filter" method yields the highest MSE of 1676.7000, indicating a poor model fit and 

high prediction error. Its regression coefficients show considerable variability, with large differences in the impact of 

predictors. In contrast, the Hampel Filter, designed to mitigate the effect of outliers, achieves a lower MSE of 208.0334 and 

offers more stable coefficient estimates, but it still does not match the performance of the proposed filters. Among the 

proposed filters, the Coif5 filter stands out with the lowest MSE of 7.9213, reflecting the best model accuracy and precision. 

This method produces the most consistent regression coefficients, demonstrating the highest effectiveness in reducing error. 

The Db20 filter also performs well, with a notable MSE of 46.4108, but it is less effective than Coif5. The Dmey filter, with 

an MSE of 13.2069, provides a balance between error reduction and coefficient stability. Overall, the proposed filters, 

especially Coif5, significantly outperform both the Hampel Filter and the "Without Filter" method, highlighting their 

superior capability in enhancing regression model performance. 

Table (2) Regression Coefficients and MSE for Real Data 

Methods Regression Coefficients MSE 

Without Filter 

47.2961 25.0896 32.5241 

1676.7000 
0.5773 0.0583 0.5938 

-0.1858 0.7636 -0.3520 

0.4854 0.2554 0.8311 

Hampel Filter 

90.0219 66.1235 80.2017 

208.0334 
-0.0500 0.2773 0.1462 

0.1816 0.2237 -0.0369 

0.1761 -0.0363 0.2810 

Proposed Filter 

Coif5 

105.3209 105.0360 118.4777 

7.9213 
0.0525 -0.0279 -0.0204 

0.0178 0.0269 -0.0717 

0.0056 -0.0051 -0.0116 

Proposed Filter 

Db20 

104.4113 104.8545 131.5511 

46.4108 
0.0066 0.0233 0.0698 

0.0673 -0.0202 -0.2788 

0.0080 -0.0170 -0.0742 

Proposed Filter 

Dmey 

108.6301 102.5845 120.3460 

13.2069 
-0.0129 -0.0166 0.0426 

0.0244 0.0296 -0.1224 

0.0140 0.0130 -0.0465 

From Figure 4, summing up the figure which provides the residuals of the multivariate regression model for each of the 

responses (y1, y2, and y3) without using any filter, the range of the residuals for the three models lies between ±50. This 

range is notably wide compared to the residuals obtained using other filtering methods. The residuals for y1 exhibit the 

largest errors and most significant outliers, while y2 and y3 display relatively smaller residuals with fewer outliers. y3 shows 

the most balanced residuals, though there are still some isolated deviations. These patterns suggest that the regression model 

for y1 may need the most refinement or outlier handling. Or Residuals for y1 (Top Plot), several large residuals, with some 

extreme values reaching close to ±50. This suggests significant model errors or potential outliers in the data. Residuals for 

𝑦2 (Middle Plot) are moderate residuals compared to 𝑦1, with some points still deviating significantly from zero. Fewer 

extreme values, but still, some outliers are present. Residuals for 𝑦3 (Bottom Plot) are relatively more balanced residuals 

with smaller deviations compared to the other plots. A few observations still show significant errors, especially around 

observations 20 and 40. 
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Figure 4. Residuals of the Multivariate Regression Model without filter data 

 

 
Figure (5) Residuals of Multivariate Regression Model for Hampel and Coif5 filter data 

 

From Figure 5, when combining the residuals from the multivariate regression model for each response variable (y1, y2, and 

y3) with the Hampel and Coif5 filters, the results show that for the Hampel filter, the residuals range from ±20 for all models. 

Similarly, the Coif5 filter's residuals range from (2 to -4) for y1, ±2 for y2, and finally (4 to -2) for y3. This range is 

considerably less than the residuals obtained by using no filter. 
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Figure 6. Residuals of Multivariate Regression Model for Db20 and Dmey filter data 

 

From Figure 6, when aggregating the residuals from the multivariate regression model for each response variable (y1, y2, 

and y3) with the Db20 and Dmey filters applied, for the Db20, the residuals fall within a range of ±2 for (y1 and y2) and ±10 

for (y3). And for the Dmey filter, also the residuals 

 

 

1. Aggarwal, C. C. (2017). Outlier Analysis (2nd ed.). Springer. https://link.springer.com/book/10.1007/978-3-319-47578-

3   

2. Arts, L. P. A. & van den Broek, E. L. (2022). The fast continuous wavelet transformation (fCWT) for real-time, high-

quality, noise-resistant time-frequency analysis. Nature Computational Science. https://www.nature.com/articles/s43588-

021-00183-z 

https://link.springer.com/book/10.1007/978-3-319-47578-3
https://link.springer.com/book/10.1007/978-3-319-47578-3
https://www.nature.com/articles/s43588-021-00183-z
https://www.nature.com/articles/s43588-021-00183-z


Iraqi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (1-16) 
 

 

14 

 

3. Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data (3rd ed.). New York: Wiley. 

https://www.amazon.com/Outliers-Statistical-Data-V-Barnett/dp/0471930946  

4. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based Local Outliers. In 

Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 93-104). LOF: 

identifying density-based local outliers 

5. Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics, 19(1), 15-18.. 

https://doi.org/10.1080/00401706.1977.10489493  

6. Donoho, D. L., & Johnstone, I. M. (1994). Ideal Spatial Adaptation by Wavelet Shrinkage. Biometrika, 81(3), 425-455. 

https://doi.org/10.1093/biomet/81.3.425  

7. Greene, W. H. (2018). Econometric Analysis (8th ed.). Pearson. Econometric Analysis - VitalSource 

8. Guo, T., Zhang, T., Lim, E., Lopez-Benitez, M., Ma, F., & Yu, L. (2022). A review of wavelet analysis and its 

applications: Challenges and opportunities. IEEe Access, 10, 58869-58903. 

https://ieeexplore.ieee.org/abstract/document/9785993/  

9. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis: Global edition. Multivariate 

Data Analysis(Internet Archive) 

10. Hampel, F. R. (1974). The Influence Curve and its Role in Robust Estimation. Journal of the American Statistical 

Association, 69(346), 383-393. https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962 

11. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust Statistics: The Approach Based on 

Influence Functions. New York: Wiley. http://dx.doi.org/10.1002/9781118186435 

12. Huber, P. J., & Ronchetti, E. M. (1981). Robust statistics john wiley & sons. New York, 1(1). 

https://onlinelibrary.wiley.com/doi/book/10.1002/0471725250 

13. Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied Linear Regression Models. McGraw-Hill. 

https://thuvienso.hoasen.edu.vn/handle/123456789/9564 

14. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2015). Feature Selection: A Data 

Perspective. ACM Computing Surveys, 50(6), Article 94. https://doi.org/10.1145/3136625  

15. Li, J., Liu, M., Li, X., & Wang, S. (2022). A Comprehensive Review on Outlier Detection with Data Imputation 

Techniques. Information Sciences, 610, 222-245. https://doi.org/10.1145/3645108  

16. Mallat, S. (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 11(7), 674-693. https://ieeexplore.ieee.org/abstract/document/192463/  

17. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis 5th ed. Introduction 

to Linear Regression Analysis 

18. Mustafa, Q., & Ali, T. H. (2013). COMPARING THE BOX-JENKINS MODELS BEFORE AND AFTER THE 

WAVELET FILTERING IN TERMS OF REDUCING THE ORDERS WITH APPLICATION. Journal of Concrete & 

Applicable Mathematics, 11(2). (DPU Online)(University of Zakho) 

19. Najafi, M., & Hakim, A. (1992). Robust Estimation and Outlier Detection in Multivariate Data. Communications in 

Statistics - Theory and Methods, 21(5), 1495-1509. 

20. Nielsen, M. (2001). On the construction and frequency localization of finite orthogonal quadrature filters. Journal of 

Approximation Theory, 108(1), 36-52. https://doi.org/10.1006/jath.2000.3514  

21. Omar, C., & Ali, T. H., Hassn, K. (2020). Using Bayes weights to remedy the heterogeneity problem of random error 

variance in linear models. Iraqi Journal of Statistical Sciences, 17(2), 58-67. DOI: 10.33899/iqjoss.2020.167391 

22. Omer, A. W., Sedeeq, B. S., & Ali, T. H. (2024). A proposed hybrid method for Multivariate Linear Regression Model 

and Multivariate Wavelets (Simulation study). Polytechnic Journal of Humanities and Social Sciences, 5(1), 112-124. 

https://journals.epu.edu.iq/index.php/ptjhss/article/view/1452 

23. Pearson, R. K. (2002). Outliers in Process Modeling and Identification. IEEE Transactions on Control Systems 

Technology, 10(1), 55-63. https://doi.org/10.1109/87.974338 

24. Rencher, A.C. and Christensen, W.F. (2012). Wiley Series in Probability and Statistics. In Methods of Multivariate 

Analysis (eds A.C. Rencher and W.F. Christensen). https://doi.org/10.1002/9781118391686.scard 

25. Rousseeuw, P. J., & Leroy, A. M. (2003). Robust Regression and Outlier Detection. Wiley.   Robust regression and outlier 

detection  

26. Strang, G., & Nguyen, T. (1996). Wavelets and Filter Banks. Wellesley-Cambridge Press. 

https://books.google.iq/books?id=Z76N_Ab5pp8C&source=gbs_navlinks_s 

27. Tabachnick, B. G., & Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Pearson. Pearson Higher Ed 

(PearsonHigherEd) 

28. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series 

B (Methodological), 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x  

https://www.amazon.com/Outliers-Statistical-Data-V-Barnett/dp/0471930946
https://dl.acm.org/doi/abs/10.1145/342009.335388
https://dl.acm.org/doi/abs/10.1145/342009.335388
https://doi.org/10.1080/00401706.1977.10489493
https://doi.org/10.1093/biomet/81.3.425
https://www.vitalsource.com/products/econometric-analysis-william-h-greene-v9780134461403
https://ieeexplore.ieee.org/abstract/document/9785993/
https://archive.org/details/multivariatedata0000jose_n6n3
https://archive.org/details/multivariatedata0000jose_n6n3
https://archive.org/details/multivariatedata0000jose_n6n3
https://www.tandfonline.com/doi/abs/10.1080/01621459.1974.10482962
http://dx.doi.org/10.1002/9781118186435
https://onlinelibrary.wiley.com/doi/book/10.1002/0471725250
https://thuvienso.hoasen.edu.vn/handle/123456789/9564
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3645108
https://ieeexplore.ieee.org/abstract/document/192463/
https://books.google.com/books?id=lSyiRZh09oEC&printsec=frontcover&dq=1.%09Montgomery,+D.+C.,+Peck,+E.+A.,+%26+Vining,+G.+G.+(2012).+Introduction+to+linear+regression+analysis+5th+ed.&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi6lpj67LCIAxWTnf0HHWOaJaMQ6AF6BAgIEAI
https://books.google.com/books?id=lSyiRZh09oEC&printsec=frontcover&dq=1.%09Montgomery,+D.+C.,+Peck,+E.+A.,+%26+Vining,+G.+G.+(2012).+Introduction+to+linear+regression+analysis+5th+ed.&hl=en&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwi6lpj67LCIAxWTnf0HHWOaJaMQ6AF6BAgIEAI
https://apps.dpu.edu.krd/staffportal/pages/profile/?staff_id=MzE5
https://sjuoz.uoz.edu.krd/index.php/sjuoz/article/view/1304
https://doi.org/10.1006/jath.2000.3514
https://doi.org/10.33899/iqjoss.2020.167391
https://journals.epu.edu.iq/index.php/ptjhss/article/view/1452
https://doi.org/10.1109/87.974338
https://doi.org/10.1002/9781118391686.scard
https://books.google.com/books?hl=en&lr=&id=woaH_73s-MwC&oi=fnd&pg=PR13&dq=Rousseeuw,+P.+J.,+%26+Leroy,+A.+M.+(2003).+Robust+Regression+and+Outlier+Detection.+Wiley.+++&ots=TDnLR_zeiO&sig=Cu-W3arSc77J1rDj0KQS9W1tpZ4
https://books.google.com/books?hl=en&lr=&id=woaH_73s-MwC&oi=fnd&pg=PR13&dq=Rousseeuw,+P.+J.,+%26+Leroy,+A.+M.+(2003).+Robust+Regression+and+Outlier+Detection.+Wiley.+++&ots=TDnLR_zeiO&sig=Cu-W3arSc77J1rDj0KQS9W1tpZ4
https://books.google.iq/books?id=Z76N_Ab5pp8C&source=gbs_navlinks_s
https://www.pearsonhighered.com/assets/preface/0/1/3/4/0134790545.pdf
https://www.pearsonhighered.com/assets/preface/0/1/3/4/0134790545.pdf
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x


Iraqi Journal of Statistical Sciences, Vol. 22, No. 2, 2025, pp (1-16) 
 

 

15 

 

29. Tukey, J. W. (1977). Exploratory data analysis. Reading/Addison-Wesley. https://link.springer.com/content/ 

pdf/10.1007/978-3-031-20719-8_2?pdf=chapter%20toc 

30. Unser, M. (2002). Sampling—50 Years After Shannon. Proceedings of the IEEE, 90(5), 742-765. 

https://doi.org/10.1109/TAC.2002.1000281 

Appendix 

clc 

clear all 

n=200;q=4; p =3;beta=[2 4 6;4 3 5;3 6 4;3 5 2;6 4 2]; randn('seed',1234); 

for j=1:1000 

    x=randn(n,q); E=randn(n,p)*[1 2 3;2 1 2;3 2 1]; X=[ones(n,1) x];  

yc= X*beta+E;yc(10,1)=35;yc(15,2)=-30;yc(10,3)=-35; 

% without filter 

[betah sigma Eh c logl]=mvregress(X,yc); Ehc=yc-X*betah; EhpEhc=Ehc'*Ehc; 

MSE(j)=trace(EhpEhc)/(n-q-1); 

% Classical Hampel Filter 

[yCC,i,xmedian,xsigma] = hampel(yc,50,3); [betah sigma Eh c logl]=mvregress(X,yCC); 

EhCC=yCC-X*betah; EhpEhCC=EhCC'*EhCC; MSEH(j)=trace(EhpEhCC)/(n-q-1); 

% Wavelet Coif5 Filter 

yw1= wdenoise(yc,6,'Wavelet','coif5', 'DenoisingMethod','universal','ThresholdRule','soft'); 

[betaw1 sigma Eh c logl]=mvregress(X,yw1); Ehw1=yw1-X*betaw1; Ew1=Ehw1'*Ehw1; 

MSEw1(j)=trace(Ew1)/(n-q-1); 

% Wavelet Db2 Filter 

yw2= wdenoise(yc,6,'Wavelet','Db20', 'DenoisingMethod','universal','ThresholdRule','soft'); 

[betaw2 sigma Eh c logl]=mvregress(X,yw2); Ehw2=yw2-X*betaw2; Ew2=Ehw2'*Ehw2; 

MSEw2(j)=trace(Ew2)/(n-q-1); 

% Wavelet Dmey Filter 

yw3= wdenoise(yc,6,'Wavelet','dmey', 'DenoisingMethod','universal','ThresholdRule','soft'); 

[betaw3 sigma Eh c logl]=mvregress(X,yw3); Ehw3=yw3-X*betaw3; Ew3=Ehw3'*Ehw3; 

MSEw3(j)=trace(Ew3)/(n-q-1); 

end 

MMSE=mean(MSE), MMSEH=mean(MSEH), MMSEw1=mean(MSEw1) 

MMSEw2=mean(MSEw2), MMSEw3=mean(MSEw3)  
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 ل في تحليل نماذج الانحدار الخطي متعدد المتغيرات يوهامبي  جيلمو مرشح التقليص امقارنة بين ال
 حسين علي  طه2ولي عمر،  أميره 1

 اربيل، العراق.  ،جامعة صلاح الدين  ،كلية الإدارة والاقتصاد ،قسم الإحصاء والمعلوماتية

كبيرة غير بواقي ويؤدي إلى قيم للنموذج معلمات المقدرة المتعدد المتغيرات يؤثر على دقة الخطي في بيانات نموذج الانحدار  شاذةإن وجود القيم الالخلاصة: 
مرشح   توظيف(. يقترح هذا البحث حصينةق الائ)أو استخدام بعض الطر  شاذةالقيم اللمعالجة مبل ا هستخدم بعض المرشحات، بما في ذلك مرشح  ن. لذلك، ةمقبول

   (Coiflets, Daubechies, Demy) الموجاتمتعدد المتغيرات باستخدام  خطي  في بيانات نموذج الانحدار ال  شاذةلمعالجة مشكلة القيم ال  يجيالمو   التقليص
( تمت مقارنتها بالطريقة التقليدية )مرشح هامبل( بناءً على  يجيالمو   التقليصوالقاعدة الناعمة. لتوضيح كفاءة الطريقة المقترحة )مرشح   شاملةمع طريقة العتبة ال

والبيانات الحقيقية. تم  التربيعي  الخطأ  متوسط    معيار أثبتت النتائج أن طريقة م   MATLABبرنامج  استخدام  من خلال المحاكاة    التقليص رشح  للقيام بذلك. 
 .والحصول على معلمات نموذج متعدد المتغيرات أكثر دقة من طريقة مرشح هامبل  شاذةمشكلة القيم المعالجة  كانت أكثر كفاءة من الطريقة التقليدية في    يجيالمو 

 العتبة. قطع ، و يجيالمو   التقليص، مرشح هامبل، شاذةنماذج الانحدار الخطي متعدد المتغيرات، القيم ال: الكلمات المفتاحية


