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 In many cases, covariates have a grouping structure that can be used in the analysis to 

identify important groups and the significant members of those groups. This paper reviews 

some group variable selection methods that utilize quantile regression. The study compares 

seven previously proposed group variable selection methods, namely the group Lasso 

estimate, the quantile group Lasso (median group Lasso) estimate, the quantile group 

adaptive Lasso estimate, the sparse group Lasso estimate, the group scad estimate, the group 

mcp estimate, and the group gel estimate through a simulation study. The simulation study 

helps determine which methods perform best in all linear regression scenarios.  

Keywords:  

Variable Selection, Group Variable 

Selection, Quantile Regression, 

Group Lasso, Regularization. 

Correspondence: 

Hussein A. Hashem 

hussein.hashem@uod.ac  

   

DOI: 10.33899/iqjoss.2025.187759  , ©Authors, 2025, College of Computer Science and Mathematics, University of  Mosul. 

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction 

     Variable selection is a crucial task for analyzing high-dimensional data in various research fields such as biology, signal 

processing, and collaborative filtering. For instance, microarray experiments measure thousands of variables (genes, proteins) 

simultaneously. However, the data sets produced by these experiments are typically large in terms of the number of predictors ( 

𝑋 ) but small in terms of the number of biological samples ( 𝑛 ). This problem is commonly known as the “large 𝑝 and small 𝑛 

problem” and poses significant challenges to conventional statistical techniques, especially in regression analysis.  

With the advancement of computer and data collection technologies, the size of databases has continued to increase. In response 

to this, various statistical methodologies have been developed over the past few decades to address the challenges posed by these 

large amounts of data. One of the major challenges is parameter estimation, model and variable selection. There have been 

several regression methods proposed for fitting multiple regression models, particularly in cases where the least-squares method 

cannot be used.  

     In 1996, Tibshirani [1] introduced a statistical method called Lasso (Least Absolute Shrinkage and Selection Operator), which 

aims to minimize the residual sum of squares while subject to a constraint on the 𝐿1norm. This approach leads to some 

coefficients being estimated as exactly zero, which helps to perform variable selection and estimation simultaneously. Since 

then, many extensions of the Lasso have been developed such as adaptive Lasso [2], Smoothly Clipped Absolute Deviation 

(SCAD)[3], and so on.  

     Quantile regression, which was first introduced by Koenker and Bassett in 1978[4], is a statistical technique that can be used 

to estimate different quantiles (e.g. the median) of a conditional distribution. It enables us to compare how predictor variables 
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affect different quantiles of the response variable. This provides valuable insights into how the relationship between variables 

changes across the distribution of the response variable.  

     Several methods have been proposed to perform variable selection in high-dimensional data with outliers by combining 

regularized and robust regression methods. One such method is the Huber Lasso method, proposed by Rosset and Zhu in 2007[5], 

which combines Huber's criterion loss with a Lasso penalty. Another method, proposed by Wang et al. in 2007[6], is the LAD-

adaptive Lasso method, which combines the idea of Least Absolute Deviation (LAD) and 𝐿1-norm refers to the same concept. 

LAD is a more user-friendly term often used in statistics, while 𝐿1-norm is the more mathematical term used in various fields 

like linear algebra and machine learning. Both terms describe the sum of the absolute values of the differences between a set of 

data points and a central point (often the median). Additionally, Lambert-Lacroix and Zwald 2011[7] developed a method called 

Huber's Criterion with an adaptive Lasso, which combines Huber's loss function and adaptive Lasso penalty. 

     Fujisawa and Eguchi [8] proposed the gamma divergence for regression, which measures the difference between two 

conditional probability density functions. Arnold and Tibshirani [9] implemented the dual algorithm available in the R package 

genLasso. Taddy[10]introduced the gamma Lasso (GL) algorithm, which is a more computationally efficient, multi-convex 

relaxation of best variable selection. Yi and Huang [11] developed Semismooth Newton Coordinate Descent (SNCD), an 

algorithm that provides better efficiency and scalability for computing the solution paths of penalized quantile regression. Qin 

et al. [12] proposed the Maximum Tangent Likelihood Estimation (MTE) method. Christidis et al. [13] introduced the Split 

Regularized Regression (SRR) method, which is a more computationally efficient, multi-convex relaxation of best-split 

selection. Finally, Zhu et al. [14] proposed Whitening Lasso (WLasso), which removes correlations by applying a whitening 

transformation to the data before using the generalized Lasso criterion designed by Tibshirani and Taylor [15]. 

     When the grouping structure is unknown and needs to be estimated, a group penalty can be applied. In biological studies, 

genetic data often comes with background scientific information. For instance, genes that share the same biological pathway are 

often found in a neighborhood, forming a group. 

     Several penalty methods have been proposed to consider the grouping structure. The Group Lasso, which uses the coefficients 

norm within a group, was first proposed by Bakin [16] and later extended by Yuan and Lin [17]. Huang et al. [18] then introduced 

group SCAD and group Minimax Concave Penalty (MCP) to select important groups for covariates with grouping structures. In 

the context of quantile regression models, Ciuperca [19] proposed an adaptive group Lasso with an adaptive Lasso penalty and 

established the sparsity and asymptotic normality of their methods. Kato [20] investigated the Group Lasso penalty for high-

dimensional sparse quantile regression models and achieved a non-asymptotic error bound for estimation error. For the 

classification problem, Hashem et al. [21] explored the Group Lasso penalty approach.  

     Cai et al. [22] conducted a study on sparse group Lasso for high-dimensional double sparse linear regression. In this type of 

regression, the parameter of interest exhibits both element-wise and group-wise sparsity simultaneously. This problem is a 

significant example of a simultaneously structured model, which is a widely studied topic in the fields of statistics and machine 

learning. Huang et al. [23] examined various coding strategies and reference categories, and they concluded that the selection 

outcomes of lasso models heavily rely on these choices. This creates practical challenges when the lasso is employed with real-

world data. 

     Moreover, McDonald [24] proposed a new R package for computing sparse Group Lasso, while Li et al. [25] introduced an 

adaptive sparse Group Lasso penalty for Logistic regression, which is used for cancer data diagnosis.  
     In the following section, we will provide an overview of various methods for selecting group variables in linear regression. 

 

2. Methods  

     We will explain the regression regularization methods using the standard model of multiple linear regression. Let the data 
(𝑥1, 𝑦1),.   .    . , (𝑥𝑛, 𝑦𝑛), and the design matrix denoted by 𝑿 = (𝑥1

𝑇, .  .  , 𝑥𝑛
𝑇 )𝑇 , the general linear model is usually written as 

 𝑦 = 𝑿𝛽 + 𝑢 

Here are the regression coefficients the random errors,  𝑥𝑖  the regressors for observation 𝑖 , 𝑖 = 1,.  .   . , 𝑛  and 𝑦 =

(𝑦1  , .   .   .  , 𝑦𝑛)𝑇. The ordinary least squares (OLS) method estimates by minimizing the residual squared error, i.e. 𝛽̂𝑂𝐿𝑆 =
𝑚𝑖𝑛

𝛽
{(𝑦 − 𝑿𝛽)𝑇(𝑦 − 𝑿𝛽)}. In general, OLS typically produces estimators that have low biases but high variances. To improve   

the accuracy of predictions, it is often necessary to slightly increase the bias to reduce the variance. We need to refer to it as a 

solution for specific problems in the model. For example, Ridge Regression in a linear model can be used for multiple regression 

models that suffer from multicollinearity problems.: 

∎ Ridge regression introduces a bias-variance trade-off. 

∎shrinking coefficients reduce variance (better generalization) but introduce a slight bias. 

∎The 𝜆 parameter controls the strength of the penalty and the balance between bias and variance. 
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2.1 Lasso Regression 

     The Least Absolute Shrinkage and Selection Operator (LASSO), introduced by Tibshirani in 1996[1], is a widely utilized 

method for estimating regression coefficients and conducting variable selection in high-dimensional data settings. LASSO 

employs a regularization technique by imposing an 𝐿₁ −penalty on the regression coefficients, inducing shrinkage towards zero 

and promoting sparsity in the model. This method proves particularly beneficial when the number of predictor variables (𝑝) 

significantly exceeds the number of samples (𝑛).       

     Typically, the intercept (𝛽₀) is exempt from the penalty, and its handling involves centring the input and response variables 

before model fitting. The primary objective of LASSO is to minimize the residual sum of squares while constraining the sum of 

absolute coefficient values to be less than a constant. The LASSO estimate (𝛽̂) comprises the coefficients that minimize this 

objective function. 

2.2 Group Lasso Methods 

     In some real-world applications involving data analysis, it is common to have predictors that can be grouped naturally. In 

such cases, selecting groups of variables is of interest. Genetic data, for instance, can be grouped such that a group of genes 

corresponds to the same biological pathway. To accommodate this kind of situation, the group Lasso method was introduced by 

Yuan and Lin in 2006 [17]. This method is ideal for shrinking entire groups of predictors to 0 or estimating the regression 

coefficients for the entire group. The regression coefficients of groups will either all be 0 or all be nonzero. 

     For the group Lasso method, assume the predictor variables can be naturally grouped into 𝑘 groups for 𝑘 =  1, . . . , 𝐾, where 

each group consists of 𝑝𝑘  predictor variables such that ∑ 𝑝𝑘
𝐾
𝑘=1 = 𝑝 . Within each group 𝑘 , there are 𝑗  predictors for 𝑗 =

 1, . . . , 𝑝𝑘 . The predictor variables should be standardized so that each 𝑥𝑖𝑗  has mean 0 and variance 1 for 𝑗 =  1, . . . , 𝑝 .The 

criterion to be minimized is: 
1

2
∑ (𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖𝑘𝛽𝑘

𝐾
𝑘=1 )2 + 𝑛𝜆 ∑ ‖𝛽𝑘‖2

𝐾
𝑘=1                                                                              

where 𝜆 ≥ 0 is a tuning parameter, 𝑦𝑖 is the 𝑖𝑡ℎ response, 𝑥𝑖𝑘  is a 1 𝑥 𝑝𝑘  vector of predictors in the 𝑘𝑡ℎ group for the 𝑖𝑡ℎ 

observation, and 𝛽𝑘  is a 𝑝𝑘 𝑥 1 vector of regression coefficients for group 𝑘. As for the criterion above, for each group of 

predictors, minimize the sum of the squared distances, while simultaneously shrinking unimportant groups with the Lasso 

penalty (the 𝐿2 the norm in this case). The tuning parameter 𝜆 controls the rate of shrinkage and can be chosen using cross-

validation. In particular, Yuan and Lin [17] use a shrinkage parameter based on an approximate 𝐶𝑝-type criterion. The Lasso 

method is a popular technique for selecting predictors while estimating their values simultaneously. However, it is not suitable 

for data with outliers or high multicollinearity. The group Lasso, which uses the Least Square Estimate (LSE), is particularly 

vulnerable to outliers and may not perform well. The shooting algorithm is used to compute the group Lasso. Although the 

shooting algorithm was originally proposed for the Lasso method, it was later adapted for the group Lasso by Yuan and Lin in 

2006 [17]. 

 

2.3 Group Descent Algorithms(𝒈𝒓𝒑𝒓𝒆𝒈) 

     A statistical method called "grouped penalties" is useful when dealing with models that have a large number of predictors. 

However, this method is often limited to linear regression models or models in which the members of a group are orthogonal to 

each other. To solve this problem, Breheny and Huang [26] combined the ideas of coordinate descent optimization and local 

approximation of penalty functions to create a new algorithm that can be used for fitting models with grouped penalties. This 

algorithm is both stable and fast, even when there are many more variables than there are samples. Although the algorithm was 

initially developed for models with grouped penalties, it can be applied to other penalized regression problems in which the 

penalties are complicated. The R package developed by Breheny and Huang [26] contains all the necessary group-related 

methods, except for ElasticNet, which is available separately. 

 

2.4 Quantile Regression 

     The Ordinary least squares (OLS) regression estimates the mean response based on predictor variables. However, an 

alternative approach known as least absolute deviation (LAD) regression estimates the conditional median function. LAD 

regression is particularly advantageous in scenarios with response outliers and heavy-tailed errors, as it offers greater robustness.                 

 

     In 1978, Koenker and Bassett [4] introduced quantile regression (QR) as an extension of LAD regression. QR estimates the 

conditional quantile function of the response, thereby providing comprehensive insights into the conditional distribution of the 

response variable. QR inherits the desirable properties of LAD regression while offering a more informative model overall. 
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      Here's a brief review of quantile regression models. Given the data(𝑥1, 𝑦1),.   .    . , (𝑥𝑛 , 𝑦𝑛), unlike the mean regression model 

which models the conditional mean 𝐸(𝑦|𝑋) = 𝑋𝛽. 

      Koenker and Bassett [15] proposed the linear quantile regression model for the 𝜃𝑡ℎ quantile (0 <  𝜃 <  1) as 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑢𝑖, 𝑖 = 1,.  .   . , 𝑛                                                                                                  

Where 𝛽 = (𝛽1, .   .   . , 𝛽𝑝)𝑇 ∈ 𝑅𝑝 and 𝑢𝑖′𝑠 are independent with their 𝜃𝑡ℎ quantiles equal to zero.  

     Quantile regression offers a flexible and comprehensive approach to modelling the relationship between response variables 

and predictors by varying the quantile parameter 𝜃. Notably, when 𝜃 equals 0.5, quantile regression reduces to the least absolute 

deviation regression or median regression, renowned for its robustness to outliers. This method estimates the conditional 

quantiles of a response variable and is widely acknowledged for its robustness to outliers, making it a preferred choice in such 

scenarios. The Least Absolute Deviation (LAD) regression is essentially the same as median regression because both LAD 

regression and median regression aim to minimize the absolute deviations between the predicted values and the actual values in 

the data. LAD regression minimizes the sum of the absolute values of the residuals (differences between predicted and actual 

values). Median regression aims to find the line (or hyperplane in higher dimensions) that minimizes the absolute deviations of 

the data points from a central point - the median. 

     A significant advantage of quantile regression is a powerful tool when the assumptions of least squares regression are not 

met or when you need a more detailed understanding of the relationship between variables across different parts of the 

conditional distribution. However, its interpretation and computational aspects require careful consideration. In practice, the 

coefficients can be consistently estimated by solving a minimization problem, providing reliable parameter estimates across 

various quantiles of interest.min
𝛽

∑ 𝜌𝜃(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)𝑛

𝑖=1                                                                                                         

where 𝜌(. ) is an outlier-resistant loss function called the objective function 

𝜌𝜃(𝑡) = {
𝜃𝑡                        𝑖𝑓       𝑡 ≥ 0

−(1 − 𝜃)𝑡        𝑖𝑓        𝑡 < 0 
,  where 0 <  𝜃 < 1.                                         

     The inaugural application of regularization in quantile regression occurred in 2004, spearheaded by Koenker. In this 

pioneering work, the LASSO penalty was introduced to address random effects within a mixed-effect quantile regression 

framework. The objective was to induce shrinkage of the random effects towards zero, leveraging the regularization properties 

of the LASSO method. This innovative approach marked a significant advancement in the field, offering a novel means of 

addressing model complexity and improving estimation precision in mixed-effect quantile regression models. 

 

3. Simulation Study 

     In this section, we compare group variable selection methods in low-dimensional settings with sparse and non-sparse 

coefficients (𝑝 = 50, 𝑛 = 100 ) and high-dimensional settings with sparse coefficients ( 𝑝 = 100, 𝑛 = 50) .For the sparse 

settings, we use a classical simulation setting, e.g. Yu et al. [27] and Li et al. [28] where 𝑦 =  𝛽0 +  𝑥𝛽 +  𝑢, with 𝛽0 =  0 and 

we create a group structure by simulating 10 groups, each consisting of 10 covariates. The 100 variables are assumed to follow 

a multivariate normal distribution 𝑁(0;  𝛴), with 𝛴 having a diagonal block structure. Each block corresponds to one group and 

is defined by the matrix  𝑟|𝑖−𝑘| , 𝑖 = 1,.   .   . ,10, 𝑘 = 1,.   .   . ,10. For the correlation 𝑟, we experiment both with 𝑟 =  0.95 

(well-defined group structure) and 𝑟 = 0.5. For the 𝛽 values we consider three cases: 

(1) The values for the first three groups are given by   𝛽𝑗 =
(0.5, 1, 1.5, 2,2.5, 2, 2, 2, 2, 2), (2, 2, 1, 1, 1,1, 3, 3, 3, 3), (1,1, 1, 2, 2, 2, 3, 3, 3, 3), and 

they are set to zero for all other groups, which corresponds to the sparse case with group structures in the predictors. 

(2)   𝛽𝑗  =  (1, 2, 3, 4, 5, 0.1, 0.2,0.3,0.4,0.5), and they are set to zero for all other groups, which corresponds to the 

very sparse case with group structures in the predictors. 

(3)   𝛽𝑗 = 0.1  for all 𝑗, which corresponds to a dense case. 

For the error 𝜖, we will examine the following distributions, which are skewed due to the presence of outliers, to assess the 

robustness of the compared methods: 

∎normal: 𝑁(0;  1)  
∎ Laplace distribution with location 0 and scale 1:  𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 1) 

∎ A 𝑡 distribution with 3 degrees of freedom: 𝑡3   

∎ Gamma distribution: 𝐺(3,1) 

∎ A mixture of two normal distributions:  0.1𝑁(0, 100) + 0.9𝑁(0, 1)  

∎ A mixture of two Laplace distributions:  0.1𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 1) +  0.9𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 2)  

∎  Chi-square distributions:  𝜒(3)
2  

We compare the group variable selection methods described in the previous section, namely: 
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∎"𝑔𝑟𝑝. 𝑙𝑎𝑠𝑠𝑜": group Lasso penalty (Yuan and Lin,[29]) 

∎"𝑞𝑔𝑟𝑝. 𝑙𝑎𝑠𝑠𝑜": quantile group Lasso (median group Lasso) (see Sherwood et al., [22]).  

∎"𝑞𝑔𝑟𝑎𝑑. 𝑙𝑎𝑠𝑠𝑜": quantile group adaptive Lasso (see Sherwood et al., [22]). 

∎"𝑠𝑝𝑎𝑟𝑠𝑒. 𝑔𝑟𝑝. 𝑙𝑎𝑠𝑠𝑜": sparse group Lasso penalty (group Lasso + Lasso), extra parameters 𝑡𝑎𝑢 (see Xiong et al., [27], Huling 

and Chien, [30]). 

∎"𝑔𝑟𝑝. 𝑠𝑐𝑎𝑑": group smoothly clipped absolute deviation, extra parameters  𝑔𝑎𝑚𝑚𝑎 (see Xiong et al., [29], Huling and Chien, 

[30]). 

∎"𝑔𝑟𝑝. 𝑚𝑐𝑝": group minimax concave penalty, extra parameters 𝑔𝑎𝑚𝑚𝑎 (see Xiong et al., [29], Huling and Chien, [30]). 

∎"𝑔𝑟𝑝. 𝑔𝑒𝑙": group exponential Lasso (Breheny, [31]) 

For the 𝑔𝑟𝑝. 𝑙𝑎𝑠𝑠𝑜and 𝑠𝑝𝑎𝑟𝑠𝑒. 𝑔𝑟𝑝. 𝑙𝑎𝑠𝑠𝑜  methods we use the R package  𝑜𝑒𝑚, for the 𝑔𝑟𝑝. 𝑠𝑐𝑎𝑑 , 𝑔𝑟𝑝. 𝑚𝑐𝑝  and 𝑔𝑟𝑝. 𝑔𝑒𝑙 
methods we use the R package 𝑔𝑟𝑝𝑟𝑒𝑔 for 𝑞𝑔𝑟𝑝. 𝑙𝑎𝑠𝑠𝑜 and 𝑞𝑔𝑟𝑎𝑑. 𝑙𝑎𝑠𝑠𝑜 we use the R package 𝑟𝑞𝑃𝑒𝑛 [32] 

 

3.1 Simulation 1: low-dimensional with sparse coefficients (Case 1) 

     In this section, we are analyzing data that has low-dimension and sparse coefficients. The dataset we are working with has 

50 variables and 100 observations. We present the simulation results in Figure 1, Table 1.A, and Table 1.B, where we examine 

the cases of low correlation (𝑟 = 0.5) and high correlation (𝑟 = 0.95) among the predictors. Figure 1 displays the median model 

error over 500 iterations.. The mean error produces similar results, with the model error computed by(𝛽̂ − 𝛽)
𝑇

𝑆𝑥(𝛽̂ − 𝛽), 

where 𝛽̂ are the estimated parameters and 𝑆𝑥 the sample covariance. 

 
Figure 1: Comparison of group variable selection methods under different error distributions. The median model error over 500 

replications for Simulation 1 when p = 50  and  n= 100. 

 

Table1.A: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.5, and β  values as in 

Simulation 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.427 0.365 0.312 0.364 0.305 0.306 0.306 

Laplace 0.834 0.628 0.548 0.685 0.598 0.597 0.602 

t3 1.071 0.715 0.633 0.862 0.763 0.762 0.761 

G(3,1) 1.257 0.906 0.804 0.964 0.885 0.891 0.887 

Normal. M 0.769 0.650 0.569 0.645 0.557 0.555 0.556 

Laplace. M 2.922 1.783 1.621 2.096 1.958 1.965 1.943 

Chi(3) 2.551 1.546 1.394 1.856 1.757 1.754 1.755 
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Table1.B: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.95, and β values as in 

Simulation 1. 

 

 

 

 

 

 

 

 

 

 

 

     Our results indicate that the grp. scad, grp.mcp, and grp.gel methods do not perform well. However, the qgrad.lasso method 

outperforms all other methods when predictors are highly correlated, for most error distributions.  

     For most LASSO problems, the standard lasso function is the recommended choice due to its efficiency and simplicity.Use 

glmnet if you need the flexibility of 𝐿1 /𝐿2  regularization or are working with classification problems .Consider sparse.lasso 

only for very large and sparse datasets where memory limitations become a concern. Avoid qgrad.lasso unless you have a 

specific reason to use the QGD algorithm for research or experimentation. The best choice depends on the specific characteristics 

of your data and the computational resources available. If you're unsure, start with the standard lasso function and explore 

alternatives like sparse.lasso if efficiency becomes a bottleneck with large datasets. 

 

3.2 Simulation 2:  high-dimensional with sparse coefficients (Case 1) 

     We are examining a scenario that is similar to simulation 3.1, but with a different sample size and multiple predictors. 

Specifically, we are dealing with a high-dimensional simulation where the coefficients are sparse and 𝑝 equals 100, while 𝑛 

equals 50. The median model error across multiple replications is reported in Figure 2, Table 2.A, and Table 2.B. The model 

error is calculated in the same way as in Figure 1.  

 
Figure 2: Comparison of group variable selection methods under different error distributions. The median model error over 500 

replications for Simulation 2 when p =  100  and  n =  50. 

 

 

 

 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.226 0.212 0.177 0.217 0.309 0.308 0.301 

Laplace 0.435 0.355 0.292 0.382 0.608 0.608 0.584 

t3 0.502 0.351 0.293 0.429 0.763 0.765 0.730 

G(3,1) 0.746 0.520 0.427 0.561 0.911 0.916 0.847 

Normal. M 0.381 0.348 0.301 0.369 0.553 0.554 0.534 

Laplace. M 1.304 0.779 0.674 0.916 1.896 1.892 1.630 

Chi(3) 1.279 0.731 0.631 0.863 1.768 1.763 1.549 
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Table2.A: Average Median Model Error over 500 replications for the case: p = 100 , n = 50, r = 0.5, and β  values as in 

Simulation 1.  

 

 

 

 

 

 

 

 

 

 

 

Table2.B: Average Median Model Error over 500 replications for the case: p = 100, n = 50, r = 0.95, and β values as in 

Simulation 1. 

 

 

 

      

 

 

 

 

 

 

 

The results of the study show that grp.lasso method does not perform well when the predictors are highly correlated. On the 

other hand, the qgrad.lasso method outperforms all other methods as departures from normality increase.  

3.3 Simulation 3: low- dimensional with very sparse coefficients (Case 2) 

To examine how well group variable selection methods perform in Simulation 1, we created a fresh simulation scenario. In this 

new setup, we have a very sparse problem similar to Case 2 where most of the coefficients are equal to zero. Figure 3 depicts 

the median model error across repeated trials, with the same method of calculating model error as seen in Figure 1. 

 
Figure 3: Comparison of group variable selection methods under different error distributions. The median model error over 500 

replications for Simulation 3 when p =  50  and  n =  100.ss 

 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 2.879 0.817 0.725 0.810 0.612 0.612 0.618 

Laplace 2.588 1.380 1.167 1.357 1.206 1.213 1.231 

t3 2.773 1.493 1.304 1.562 1.379 1.385 1.413 

G(3,1) 3.119 1.920 1.722 1.961 1.794 1.796 1.805 

Normal. M 2.992 1.241 1.144 1.209 1.079 1.079 1.080 

Laplace. M 3.987 3.627 3.325 3.775 3.968 3.913 3.764 

Chi(3) 5.352 3.586 3.093 3.716 3.434 3.432 3.473 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 4.161 0.379 0.312 0.486 0.591 0.591 0.555 

Laplace 4.665 0.620 0.484 0.730 1.152 1.152 1.006 

t3 6.179 0.774 0.533 0.990 1.398 1.397 1.203 

G(3,1) 4.021 1.005 0.795 1.040 1.716 1.720 1.481 

Normal. M 2.853 0.652 0.527 0.636 1.069 1.069 0.958 

Laplace. M 4.493 1.708 1.293 1.784 3.844 3.769 2.810 

Chi(3) 3.869 1.543 1.233 1.677 3.364 3.377 2.560 
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Table3.A: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.5, and β  values as in 

Simulation 3.  

 

 

 

 

 

 

 

 

 

 

 

Table3.B: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.95, and β values as in 

Simulation 3.  

 

 

 

 

 

 

 

 

 
     Based on the data presented in Figure 3, Table 3A, and Table 3B, our simulation study concludes that the group exponential 

Lasso (grp.gel) is the most effective method as non-normality increases. This is especially true when the predictors are strongly 

correlated. 

3.4 Simulation 4:  high-dimensional with very sparse coefficients (Case 2) 

     We are exploring a scenario similar to simulation 3.3 but with a larger number of predictors and a different sample size. 

Specifically, we are examining a high-dimensional simulation with sparse coefficients, where there are 100 predictors and 50 

observations. Figure 4 displays the median model error across 500 replications. The model error is calculated in the same way 

as in Figure 3.  

 
Figure 4: Comparison of group variable selection methods under different error distributions. The median model error over 500 

replications for Simulation 4 when p =  100  and  n =  50. 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.346 0.166 0.107 0.157 0.104 0.103 0.100 

Laplace 0.747 0.251 0.161 0.313 0.203 0.199 0.198 

t3 1.002 0.301 0.179 0.429 0.263 0.263 0.246 

G(3,1) 1.144 0.434 0.271 0.443 0.293 0.285 0.272 

Normal. M 0.691 0.336 0.218 0.292 0.196 0.195 0.187 

Laplace. M 2.766 0.715 0.502 0.956 0.670 0.664 0.604 

Chi(3) 2.447 0.754 0.472 0.862 0.581 0.564 0.532 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.150 0.170 0.207 0.153 0.101 0.101 0.083 

Laplace 0.343 0.267 0.281 0.283 0.213 0.209 0.161 

t3 0.413 0.261 0.308 0.336 0.250 0.249 0.193 

G(3,1) 0.550 0.391 0.337 0.398 0.289 0.287 0.211 

Normal. M 0.282 0.293 0.283 0.264 0.183 0.184 0.146 

Laplace. M 1.358 0.591 0.447 0.693 0.642 0.627 0.445 

Chi(3) 1.200 0.544 0.392 0.625 0.590 0.597 0.412 
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Table4.A: Average Median Model Error over 500 replications for the case: p = 100, n = 50, r = 0.5, and β  values as in 

Simulation 3. 

 

 

 

 

 

 

 

 

 

 

 

Table4.B: Average Median Model Error over 500 replications for the case: p = 100, n = 50, r = 0.95, and β values as in 

Simulation 3. 

 

 

 

 

 

 

 

 

 
     Based on the findings presented in Figure 5, Table 4A, and Table 4B, our simulation study concludes that the grp.gel and 

qgrad.lasso methods outperform all other methods as the degree of deviation from normality increases. This is especially 

noticeable when the predictors are strongly correlated. 

3.5 Simulation 5: low- dimensional with non-sparse coefficients (Case 3) 

     To examine how well group variable selection methods perform in non-sparse settings, we conducted a new simulation that 

closely resembled case 3. This simulation involved a non-sparse situation, and we analyzed the median model error over 500 

replications for the scenarios where the number of variables (𝑝) is 50 and the number of observations (𝑛) is 100. The results of 

this analysis are presented in Figure 5. 

 
Figure 5: Comparison of group variable selection methods under different error distributions. The median model error is over 

500 replications for Simulation 5 when p =  50  and  n =  100. 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.755 0.397 0.243 0.383 0.204 0.209 0.194 

Laplace 0.935 0.597 0.354 0.671 0.406 0.420 0.383 

t3 1.271 0.683 0.396 0.855 0.482 0.480 0.443 

G(3,1) 1.024 1.014 0.668 1.038 0.640 0.626 0.606 

Normal. M 0.945 0.672 0.414 0.626 0.352 0.357 0.339 

Laplace. M 1.804 1.941 1.099 2.079 1.313 1.274 1.190 

Chi(3) 1.722 1.980 1.133 2.041 1.151 1.122 1.059 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 1.825 0.336 0.242 0.403 0.189 0.189 0.148 

Laplace 1.602 0.496 0.267 0.518 0.367 0.375 0.276 

t3 2.002 0.568 0.406 0.675 0.469 0.476 0.326 

G(3,1) 2.183 0.767 0.443 0.763 0.585 0.584 0.402 

Normal. M 2.154 0.559 0.341 0.540 0.339 0.339 0.262 

Laplace. M 1.819 1.142 0.593 1.306 1.316 1.314 0.745 

Chi(3) 2.055 1.193 0.613 1.282 1.112 1.110 0.680 
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Table5.A: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.5, and β  values as in 

Simulation 5.  

 
 

 

 

 

 

 

 

 

 

 

Table5.B: Average Median Model Error over 500 replications for the case: 𝑝 = 50, 𝑛 = 100, 𝑟 = 0.95, and 𝛽 values as in 

Simulation 3. 

 

 

 

 
      

 

 

 

 

 

Based on the findings shown in Figure 5 and Tables 5.A and 5.B, our simulation study confirms that both the qgrp.lasso and 

sparse.lasso methods perform better than all other methods as the extent of non-normality increases. This is especially apparent 

when the predictors are highly correlated. 

 

 

3.6 Simulation 6:  high-dimensional with non-sparse coefficients (Case 3) 

To examine the effectiveness of group variable selection methods in Simulation 2, we established a fresh simulation. This 

simulation is similar to case 3 in that it involves a non-sparse situation. Figure 6 displays the median model error from 

500 replications for the scenarios where 𝑝 =  100 and 𝑛 =  50. 

 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.491 0.290 0.316 0.225 0.459 0.503 0.499 

Laplace 0.969 0.316 0.365 0.350 0.639 0.750 0.750 

t3 1.232 0.372 0.432 0.432 0.718 0.841 0.844 

G(3,1) 1.420 0.531 0.628 0.438 0.763 0.883 0.913 

Normal. M 0.887 0.450 0.520 0.344 0.580 0.678 0.717 

Laplace. M 3.170 0.717 0.872 0.800 0.998 1.040 1.040 

Chi(3) 2.819 0.758 0.919 0.743 1.108 1.226 1.200 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.389 0.128 0.133 0.098 0.550 0.533 0.181 

Laplace 0.842 0.122 0.132 0.170 1.030 1.036 0.293 

t3 1.013 0.145 0.150 0.197 1.196 1.254 0.345 

G(3,1) 1.321 0.296 0.302 0.239 1.305 1.434 0.422 

Normal. M 0.764 0.214 0.217 0.159 0.980 0.995 0.280 

Laplace. M 2.714 0.344 0.368 0.460 2.098 2.296 0.748 

Chi(3) 2.572 0.438 0.440 0.427 2.021 2.247 0.699 
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Figure 6: Comparison of group variable selection methods under different error distributions. The median model error is over 

500 replications for Simulation 6 when p = 100  and  n =  50. 

 

 

Table 6.A: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.5, and β values as in 

Simulation 5.  

 
 

 

 

 

 

 

 

 

 

 

 

Table6.B: Average Median Model Error over 500 replications for the case: p = 50, n = 100, r = 0.95, and β values as in 

Simulation 3.  

 

 
     

 

 

 

 

 

 

 

 

 

 According to the results presented in Figure 6, Table 5A and Table 5B, our simulation study has confirmed that the qgrp.lass 

method outperforms all other methods as the degree of departure from normality increases. Moreover, the results also indicate 

that grp.mcp is the worst performing method, particularly when the predictors are highly correlated and there is a significant 

deviation from normality. 

 

 

4. Conclusions 

     In statistics, many methods rely on the assumption of normality. However, these methods may not be suitable for data that 

deviate significantly from normality, such as when outliers are present. Recently, group variable selection methods have been 

developed, such as the group Lasso method and the quantile group Lasso (median group Lasso). These methods are particularly 

useful in high-dimensional settings, where the number of predictors (𝑝) is greater than the sample size (𝑛). In a simulation study, 

we found that the quantile group adaptive Lasso (qgrad.lasso) and the group exponential Lasso (grp.gel) methods outperformed 

other group methods, especially in cases where there was a large departure from normality. 
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 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.650 0.824 0.871 0.713 1.623 2.194 1.634 

Laplace 1.297 1.015 1.217 1.065 1.517 1.905 1.615 

t3 1.527 1.103 1.233 1.178 1.751 1.973 1.865 

G(3,1) 2.004 1.682 2.055 1.594 1.993 2.383 2.289 

Normal. M 1.116 1.240 1.398 1.019 1.878 2.556 2.130 

Laplace. M 4.182 2.169 2.526 2.223 2.592 2.794 2.715 

Chi(3) 3.857 2.151 2.449 2.164 2.391 2.567 2.479 

 lasso qgrp. lasso qgrad. lasso sparse. lasso scad mcp gel 

N(0,1) 0.327 0.439 0.439 0.351 4.175 7.607 0.819 

Laplace 0.603 0.570 0.600 0.632 4.104 5.937 1.283 

t3 0.781 0.625 0.660 0.786 2.910 5.455 1.402 

G(3,1) 0.894 1.034 1.114 0.912 3.254 5.672 1.731 

Normal. M 0.548 0.750 0.799 0.590 2.740 3.810 1.272 

Laplace. M 2.109 1.586 1.711 1.761 4.797 7.143 2.969 

Chi(3) 1.671 1.588 1.766 1.568 4.277 5.260 2.713 
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 طرق اختيار مجموعة المتغيرات مع الانحدار الكمي: دراسة محاكاة 
 

 حسين عبد الرحمن هاشم
  العراققسم الرياضيات، كلية العلوم ، جامعة دهوك، دهوك، 

مهمة في تلك  في العديد من الحالات، تحتوي المتغيرات المشتركة على بنية تجميع يمكن استخدامها في التحليل لتحديد المجموعات المهمة والمتغيرات ال:لخلاصةا
بع طرق اختيار متغيرات المجموعة المقترحة بعض طرق اختيار متغيرات المجموعة التي تستخدم الانحدار الكمي. تقارن الدراسة س المجموعات. يستعرض هذا البحث

التكيفي للمجموعة   لاسو ، وتقدير)المجموعة المتوسط( quantile group Lasso)(  لاسو ، وتقدير مجموعة كمية (group Lasso)لاسو مسبقًا، وهي تقدير مجموعة
 mcp للمجموعة، وتقدير scad ، وتقدير( the sparse group Lasso)المتناثرةللمجموعة   لاسو ، وتقدير( the quantile group adaptive Lasso)الكمية

من خلال دراسة المحاكاة. تساعد دراسة المحاكاة في تحديد الأساليب التي تحقق أفضل أداء في جميع سيناريوهات الانحدار    للمجموعة  gelللمجموعة. ، وتقدير  
 .الخطي

 .اختيار متغير ؛ اختيار متغير المجموعة الانحدار الكمي ، لاسو المجموعة ، التنظيمالكلمات المفتاحية: 


