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 One main problem of the traditional quality control charts, such as the Individual 

Observations Chart and the Moving Average Chart, is that they do not focus on 

monitoring the differences in the produced materials. To address this issue, researchers 

suggested creating new charts based on the Haar wavelet that could potentially put more 

focus and better handle the data noise affecting traditional charts' accuracy. The new 

proposed charts are based on a method called wavelet transform for Haar wavelet. One 

chart records the average of individual observations (Approximate coefficients or low 

pass filter) while the other monitors the variations among these observations (Detail 

coefficients or high pass filter). For the first time, the universal threshold method to 

treat data noise was used to create control limits in the proposed charts. The researchers 

used both simulated and real data to develop these charts using MATLAB software. 

The study proved the accuracy and efficiency of the proposed charts, their success in 

handling the data noise, and their sensitivity in detecting minor changes that may occur 

in the production process. 
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1. Introduction 

In the early 1920s, the field of quality control witnessed a significant improvement with the introduction of the 

Shewhart Control Chart by Walter A. Shewhart. His invention allowed manufacturers to monitor and improve process 

quality through a systematic method and by visually tracking data points over time (Barlow and Irony, 1992). The 

Shewhart Control Chart was an initiative to distinguish between variations of a common cause (ordinary fluctuations 

within a process) and variations of a special cause (indicating potential problems), which allowed organizations to use 

accurate statistical data to make informed decisions (Ali et al. 2024). 

After Shewhart, key figures like Edwards Deming and Joseph Juran made great contributions in the 1950s and 1960s 

in popularizing the principles of quality management in manufacturing, which led to continuous improvement and 

customer satisfaction. The influence of such scientists led to the adoption of quality control practices across different 

industries worldwide (Zabell, 1992; Bergman, 2009).  

Later in the 1980s, new technologies were invented that led to the incorporation of advanced analytical methods with 

traditional statistical methods. This period marked the introduction of Statistical Process Control (SPC), which 

employed control charts to be more effective in the monitoring of manufacturing processes. The integration of 

computers into quality control systems enabled real-time data analysis, which enhanced the ability to detect variations 

and ensured adherence to quality standards (Samed et al. 2024).  
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In the 1990s, Discrete Wavelet Transform (DWT) was introduced and emerged as an effective tool for multiresolution 

analysis (Ali et al. 2024). This allowed for the examination of signals both in frequency and time domains at the same 

time. Because of its binary nature, the Haar wavelet was perfect for detecting abrupt changes in data, but its use was 

limited in fields such as image processing. By the early 2000s, DWT techniques started to be used in industrial quality 

control and were recognized to be superior to traditional methods. Researchers showed that Haar wavelet DWT could 

be effective in identifying small and sudden shifts or anomalies in production, which was crucial for the enhancement 

of sensitivity to changes (Mustafa and Ali, 2013). This was a feature that the traditional methods lacked. As it was 

important for industries to use sophisticated monitoring tools, wavelet-based methods started to be used more 

frequently in sectors like pharmaceuticals, electronics, and automotive manufacturing. Moving into the 2010s, Haar 

wavelet DWT became more integrated into advanced quality control systems. In terms of collecting detailed 

production data, the advancements in sensor technology made it much easier and that enabled real-time monitoring 

solutions. Studies proved that wavelet-based quality monitoring systems were more effective in the process of 

detecting critical deviations in production quality compared to traditional methods (Abramovich et al. 2000).  

In 2024, researchers (Sakar et al. 2024) proposed single-valued charts based on the wavelet shrinkage of the 

Daubechies wavelet to handle data noise. In the same year, researchers (Duaa et al. 2024) presented the CUSUM chart 

based on the wavelet shrinkage of the Symlets wavelet, which was more efficient than classical charts and addressed 

the problem of outliers and noise. 

This article proposes charts based on Haar wavelet analysis. Two charts are created, one for controlling the Haar 

approximation coefficients (mean) and the other for controlling the Haar detail coefficients (difference or variance). 

It is not available in traditional single charts, as well as addressing the noise problem using low and high pass filters. 

2. Quality Control Charts 

 

Charts for Quality Control are to determine if a process is under or out of control and to help make informed decisions 

about how the process is progressing through all its stages. They are regarded as one of the most popular statistical 

methods in the field of quality control of the production and service process (Ali, 2007). 

Qualitative Control Chart Types The two primary categories of control charts are based on the kind of data that is 

handled by the production or service process. They're Quality Control Charts for Variables Qualities Control Chart 

Attributes Control Diagrams for Characteristics fundamental elements of control charts the fundamental design of 

control charts was created by scientist Shewhart and consists of the control chart, which is the middle boundary 

(Koetsier et al. 2012). Central Control Limit (CCL) Central Control Limit is one possibility. As an illustration, it 

shows the average It shows the control chart's upper limit, which is represented by the following: (Upper Control 

Limit (UCL) Upper Control Limit 2. The process is out of control, exceeding what is allowed and deviating three 

standard deviations from the central control limit (Ali and Esraa 2017). It symbolizes the control chart's lower limit, 

which is as follows: (Lower Control Limit (LCL) Lower Control Limit 3 The process measurements are three standard 

deviations outside of the central control limit and cannot be less than it. 

3. Individual Control Chart 

The individual control chart is a tool that is used to track variable data. It consists of two charts: one shows the results 

of individual samples (X), and the other displays the moving range (R) between these samples. This chart is especially 

helpful for monitoring processes where data is not collected too often (Ali et al. 2017). It looks at how individual 

sample results change over time. Since we do not use rational subgrouping here, it is important to think about when 

the results would be measured. If the process is stable, the average on the ‘individuals’ chart gives a good estimate of 

the overall average, while the average range helps estimate the standard deviation (Bakir, 2004). 

 

4. Moving Range Control Chart 

Moving range (MR) charts, also called individuals and moving range charts, are control charts that show the absolute 

differences between consecutive measurements of a process. They are often used alongside X-bar charts, which 

display the average values of the process output. These charts together help monitor both the average performance 

and the variability of a process (Roes et al. 1993; Rigdon et al. 1994; Amin & Ethridge, 1998). 

To create a moving range chart, processed data is gathered in order and the absolute differences between each pair of 

consecutive observations are calculated. Then these differences are plotted on the chart. Also, the average of these 
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differences needs to be found, which helps set the upper control limit (UCL) and the lower control limit (LCL). The 

UCL is typically three times the average moving range, while the LCL is usually zero. These limits indicate the 

expected variation in the process (Kareem et al. 2019). When interpreting a moving range chart, scientists look for 

points or patterns that fall outside these control limits or suggest changes in variation. Signs of special causes for 

variation include a point above the UCL, a point below the LCL, or certain patterns of consecutive points above or 

below specific thresholds. If any of these signals are spotted, it is important to investigate and address the underlying 

cause. It is also worth noting that moving range charts can sometimes be misinterpreted, so understanding the process 

and choosing the right calculation method is crucial. In some cases, using a fixed range might be more effective than 

a moving one. 

Overall, moving range charts are a straightforward and powerful tool for monitoring process variability in Six Sigma. 

They help in assessing the stability and capability of the process, estimate standard deviation, and check against 

customer requirements. Plus, they can highlight areas for improvement and facilitate better communication and 

teamwork by allowing them to share process data with other team members and stakeholders. In the end, moving 

range charts support ensuring that the process remains stable, capable, and continuously improving. 

5. Wavelets  

A wavelet is a wave-like oscillation that starts at zero, rises to a peak, and then returns to zero (Walker, 1999). It has 

a specific point where it is strongest, a particular oscillation period, and a scale that describes how it grows and shrinks. 

Wavelet analysis first appeared in the mathematics world in the 1980s and became more popular in geophysics by the 

1990s.  

Wavelets are handy for analysing signals, processing images, and compressing data. While keeping some sense of 

where things happen in time or space, wavelets help in separating information at different scales. For example, the 

FBI typically uses wavelets to compress and store fingerprint data (Omer et al. 2024).  

Wavelets work in a way that involves modifying one or two basic waveforms, which makes them great for studying 

fractal fields. They are especially useful for analysing time series data that changes over time, which traditional 

Fourier analysis may fail to do (Ali et al. 2018).  

In terms of images, wavelets can effectively compress data from satellite or radar images. As the highest frequencies 

are removed, the important local details are kept, resulting in a low-resolution version of the original image. On the 

other hand, the Fourier analysis is known to lose the recognizable features of an image if too many harmonics are 

removed because instead of local patterns, Fourier focuses on global ones (Ali and Mohammad, 2021). 

Overall, wavelets are generally thought of as a middle ground between looking at data at specific times, where one 

gets detailed timing information and analysing it in frequency space, where frequency insights are gained but timing 

details are lost. Wavelet analysis allows us to keep some of both, making it a useful compromise. 

6. Haar Wavelet 

The Haar wavelet is the simplest wave among all and is considered the first known wavelet, which was proposed by 

Alfred Haar in 1909 and is named after the scientist. Because of its simplicity, it is usually the first choice for people 

who want to learn about wavelets and their specifications (Antoniadis, 2007). 

To generate a Haar wavelet, consider the constraints on the
kh  for N=2. The stability condition enforces ℎ0 + ℎ1  =

 2, while the accuracy condition implies ℎ0 + ℎ1  =  0, and the orthogonality gives ℎ2
0 + ℎ2

1  =  2. 

Then a unique solution exists (Gencay et al. 2002): 

              ℎ0 = ℎ1  =  1, using  

                                   ∅(𝑥) = ∅(2𝑥) + ∅(2𝑥 − 1)        

The scaling function is satisfied by a box function  

 𝐵(𝑥) = [
1          0 ≤ 𝑥 ≤ 1
0      𝑜. 𝑤

]                                                              

Define the function   as 

𝜓(𝑥) = 𝜓(2𝑥) − 𝜓(2𝑥 − 1)                                                                                                             (3) 

Then the Haar wavelet was obtained, 

(1) 

(2) 
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𝜓(𝑥) =    

[
 
 
 
 1     0 < 𝑥 ≤

1

2

−1          
1

2
< 𝑥 ≤ 1

0      𝑜. 𝑤

                                                                                                                               (4) 

The function ∅(𝑥) is the Haar scaling function and 𝜓(𝑥) is the Haar Wavelet.  

7. Discrete Wavelet Transformation 

The discrete wavelet transform (DWT) is an algorithm that processes data and is highly used in various applications, 

including science, mathematics, engineering, and computer science. Using a mother wavelet, which can also be 

referred to as a compactly supported basis function, it decomposes data and provides a multiresolution representation 

of the data (Ali & Awaz, 2017).  

In this example where a vector of data X  consists of 
j2  observation and j  is an integer, the DWT of X  is   

 𝑊 = 𝑤𝑋                                                                                                                                          (5)          

Where W  is an 𝑛 ∗ 1  a vector comprising both discrete scaling and wavelet coefficients. The vector of wavelet 

coefficients can be organized into 𝑗 + 1 vectors. 

𝑊 = [𝑊1,𝑊2,… ,𝑊𝑗0 , 𝑉𝑗0]
𝑇                                                                                                                                               (6) 

Where Wj  is a length  𝑁𝑗 = 𝑁
2𝑗⁄   vector of wavelet coefficients (Details) associated with changes on a scale of length  

𝜆𝑗 = 2𝑗−1   symbolled as DC, and   𝑉𝑗𝑂   is a length 𝑁𝑗 = 𝑁
2𝑗⁄   vector of scaling coefficients (approximation or 

smoothing) associated with the average on a scale of length 𝜆𝑗 = 2𝑉𝑗0 symbolled as AC, and w  is an orthonormal 

𝑁 × 𝑁 matrix associated with the orthonormal wavelet basis chosen. 

The DWT coefficients for the data X can be described in a hierarchical process as follows. 

After each Discrete Wavelet Transform (DWT), using the same filter as before, we break down the approximation 

coefficients into different bands. This allows us to combine the specifics of the latest breakdown. At each level, we 

can rebuild the denoised signal by using the inverse transform. 

𝑋 = 𝑊𝑤𝑇 = ∑𝑊𝑇
𝑗

𝑗0

𝑗=1

𝑊𝑗 + 𝑉𝑇
𝑗0 

𝑉𝑗0 
                                                                                                                                (7) 

The discrete wavelet transform of the Haar (or Db1) wavelet was chosen in the proposed chart configuration because 

it is the only linear wavelet available from the Daubechies wavelets and therefore it is a Daubechies of the first order 

(Db1) while the rest of the Daubechies (DbN) wavelets (N = 1, 2, …, 45) are nonlinear and do not have extension of 

the original observations while the nonlinear wavelets extend the number of original observations.  The discrete 

wavelet transform of the Haar wavelet is the theoretical basis of the Daubechies wavelet which has been used in many 

areas of noise processing, most notably time series analysis. 

8. Universal Threshold 

The Universal Threshold, developed by Donoho and Johnstone, is a popular thresholding technique for wavelet 

transforms, particularly in denoising signals and data processing. Its underlying principle is to set a threshold to remove 

or suppress noise in wavelet coefficients while retaining the essential signal characteristics. This approach is based on 

the idea that in the wavelet transform domain, noise appears across a wide range of smaller coefficients, while the 

actual signal is usually concentrated in the larger coefficients. 

The Universal Threshold is particularly effective because it considers the signal length and noise level. The logarithmic 

term ￼ increases the threshold for larger datasets, reflecting that longer signals tend to have more noise components 

spread across their wavelet coefficients. 

9.  Proposed Charts 

The Haar wave partitions the data on the qualitative characteristics of the produced material into two parts. The first 

part represents the approximation coefficients (scale function) with n/2 coefficients and n is the sample size, which is 

proportional to the general average of observations of the qualitative characteristic. In contrast, the second part 
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describes the detail coefficients (the mother wavelet function) with n/2 coefficients (DC), which are proportional to 

the differences (variance) of the observations of the qualitative characteristic.  

The proposed charts are based on Haar wavelet analysis by creating two charts, the first for controlling the Haar 

approximation coefficients and the second for controlling the Haar detail coefficients, and they were as follows: 

First Chart: Haar approximation coefficients Chart: The approximation coefficients (AC) are the points plotted on 

this chart which are obtained through the following: 

Define 𝑉0 = 𝑥 and x is the observations vector of length (n) and set j = 1 (the level) input to the jth stage of the pyramid 

algorithm is Vj-1 (is full-band) and related to frequencies [0, 1 2𝑗⁄ ] in x. Half-band filters for i = 0, 1, …, Nj-1 are: 

𝐷𝐶 ≡ 𝑊𝑗,𝑖  = ∑ ℎ𝑙𝑉𝑗−1,2𝑖+1−𝑙 𝑚𝑜𝑑 𝑁𝑗−1

𝐿−1

𝑙=0
                                                                        (8)  

𝐴𝐶 ≡ 𝑉𝑗,𝑖  = ∑ 𝑔𝑙𝑉𝑗−1,2𝑖+1−𝑙 𝑚𝑜𝑑 𝑁𝑗−1

𝐿−1

𝑙=0
                                                                       (9) 

Can be placed in vectors 𝑊𝑗  and 𝑉𝑗  where 𝑊𝑗  are wavelet coefficients (DC) for scale 𝛾𝑗 = 2𝑗−1  and 𝑉𝑗  are scaling 

coefficients (AC) from equation (9) for scale 𝛿𝑗 = 2𝑗. j is increased and the above is repeated until j = J0 yields DWT 

(DC and AC) coefficients W1, W2, …, WJ0, VJ0. More generally, any even number is used for the number of 

observations by the maximum overlap discrete Haar wavelet transform (MODWT for Haar) to obtain the 

approximation and detail coefficients. 

The target line (TA) represents the average of the AC: 

𝑇𝐴  =  ∑
𝐴𝐶𝑖

𝑛/2

𝑛/2

𝑖=1
                                                                                                                      (10) 

The control limits (UCLA and LCLA) are: 

𝑈𝐶𝐿𝐴  =  𝑇𝐴 + 3𝜃                                                                                                                        (11) 

𝐿𝐶𝐿𝐴  =  𝑇𝐴 − 3𝜃                                                                                                                        (12) 

Where 𝜃 represents the threshold level estimated from the maximal overlap discrete transformation coefficients at the 

first level using the Universal method, that is:  

𝜃 =  𝑀𝑒𝑑𝑖𝑎𝑛(|𝑊1,𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑊1,𝑖)|) 0.6745⁄                                                                      (13) 

The constant value (0.6745) represents the median of the standard normal distribution. The universal threshold level 

(𝜃) was used to replace the standard deviation of the coefficients in calculating the control limits because it is the 

border between noise and the true values of the observations, thus it was used as the limiting between the qualitative 

characteristic that conforms to the required specifications and does not conform to the required specifications, taking 

into account the number (10) of the standard normal distribution. and the average of those coefficients. 

Second Chart: Haar Detail coefficients Chart: The Detail coefficients (DC) are the points plotted on this chart which 

are obtained through equation (8), The target line (TD) represents the average of the DC: 

𝑇𝐷  =  ∑
𝐷𝐶𝑖

𝑛/2

𝑛/2

𝑖=1
                                                                                                                               (14) 

The control limits (UCLA and LCLA) are: 

𝑈𝐶𝐿𝐷  =  𝑇𝐷 + 3𝜃                                                                                                                                 (15) 

𝐿𝐶𝐿𝐷  =  𝑇𝐷 − 3𝜃                                                                                                                                 (16) 
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10. Simulation Study 

To illustrate the idea of the proposed charts and the points drawn on them, (6) random observations were generated, 

and the discrete wavelet transform for Haar wavelet was used at the first level to obtain three values for the 

approximation coefficients and three values for the detail coefficients, as in Figure (1). 

 
Figure 1. Observations and DWT For Haar Wavelet 

Figure 1 shows that the first two observations (1 and 0.5) can be converted into two coefficients. The first represents 

the approximation coefficient (1.0607), which is proportional to the average of the two observations (the red point), 

i.e., the sum of the two observations multiplied by the Haar mother wavelet coefficient (1 √2⁄ ), the second represents 

the detail coefficient (0.3536), which is proportional to the variance (or difference) of the two observations (the blue 

point), i.e., the first observation minus the second observation and then multiplied by the Haar mother wavelet 

coefficient (1 √2⁄ ). In the same way, the third and fourth observations were segmented to obtain the second 

approximation and detail coefficients, and so on for the fifth and sixth observations. The approximation and detail 

coefficients are the points drawn on the proposed charts (the approximation and detail coefficients charts, 

respectively). 

To compare the proposed and traditional charts, data generation from normal distribution was repeated (1000) times 

in simulating the Individual control chart for several different sample sizes (24, 28, and 32), The sample size chosen 

is well suited to single-value charts (because these charts are for controlling rare qualitative characteristics or 

destructive sampling). Mean values (50, 75, and 100) and variance values (1, 3, and 9) where variance equals one fits 

the standard normal distribution (small variance), variance equals 3 fits the traditional control limits that add and 

subtract three standard deviations to the target line (med variance), and finally variance (9) fits data with high variance 

(big variance). The proposed charts were created for the approximation and detail coefficients of the Haar wavelet and 

compared with traditional charts (Individual and moving average control charts) based on the minimum difference 

(DF = Difference between upper control limit and target line) and the average of the results are summarized in the 

following tables:  

Table 1. Average of Results for Simulation (Mean = 50, Variance = 1) 

Chart m UCL LCL Target Variance DF 

Approximate 

24 

72.8075 68.6115 70.7095 1.0194 2.0980 

Detail 2.0909 -2.1015 -0.0071 0.9687 2.0980 

Individual 52.9591 47.0393 49.9992 0.9910 2.9599 
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Moving Range 3.6359 0.0000 1.1129 0.6832 2.5230 

Approximate 

28 

72.8176 68.5941 70.7058 1.0084 2.1117 

Detail 2.1051 -2.1184 -0.0067 0.9677 2.1117 

Individual 52.9629 47.0303 49.9966 0.9878 2.9663 

Moving Range 3.6437 0.0000 1.1153 0.6853 2.5284 

Approximate 

32 

72.8175 68.6038 70.7106 1.0078 2.1068 

Detail 2.1002 -2.1135 -0.0067 0.9751 2.1068 

Individual 52.9712 47.0287 50.0000 0.9899 2.9712 

Moving Range 3.6498 0.0000 1.1172 0.6927 2.5327 

Table 2. Average of Results for Simulation (Mean = 75, Variance = 3) 

Chart m UCL LCL Target Variance DF 

Approximate 

24 

109.6978 102.4301 106.0639 3.0582 3.6339 

Detail 3.6216 -3.6461 -0.0123 2.9062 3.6339 

Individual 80.1252 69.8718 74.9985 2.9731 5.1267 

Moving Range 6.2976 0.0000 1.9276 2.0497 4.3700 

Approximate 

28 

109.7153 102.4000 106.0576 3.0252 3.6576 

Detail 3.6461 -3.6692 -0.0116 2.9032 3.6576 

Individual 80.1318 69.8564 74.9941 2.9633 5.1377 

Moving Range 6.3111 0.0000 1.9318 2.0560 4.3794 

Approximate 

32 

109.7151 102.4167 106.0659 3.0234 3.6492 

Detail 3.6376 -3.6607 -0.0116 2.9253 3.6492 

Individual 80.1462 69.8536 74.9999 2.9698 5.1463 

Moving Range 6.3217 0.0000 1.9350 2.0780 4.3867 

The three Tables (1-3) show the efficiency of the proposed charts (The charts with shorter control limit periods or DF 

are more sensitive to slight changes that can occur in production processes) compared to traditional charts and the 

proposed charts obtained a minimum difference for all cases of the sample size (24, 28, and 32), mean (50, 75, and 

100), and variance (1, 3, and 9) of (2.0980, 2.1117, 2.1068, 3.6339, 3.6576, 3.6492, 6.2940, 6.3352, and 6.3205) 

respectively for the approximation and detail coefficients respectively of the Haar wavelet, compared to traditional 

charts for individual and moving average control charts. The difference between the upper control limit and target line 

is equal for the approximation and detail coefficients Haar wavelet charts. 

Table 3. Average of Results for Simulation (Mean = 100, Variance = 9) 

Chart m UCL LCL Target Variance DF 

Approximate 

24 

147.7118 135.1238 141.4178 9.1746 6.2940 

Detail 6.2728 -6.3152 -0.0212 8.7185 6.2940 

Individual 108.8772 91.1178 99.9975 8.9193 8.8797 

Moving Range 10.9077 0.0000 3.3388 6.1491 7.5690 

Approximate 

28 

147.7421 135.0716 141.4069 9.0756 6.3352 

Detail 6.3152 -6.3553 -0.0200 8.7095 6.3352 

Individual 108.8886 91.0909 99.9897 8.8898 8.8988 

Moving Range 10.9312 0.0000 3.3460 6.1679 7.5853 

Approximate 

32 

147.7417 135.1006 141.4211 9.0702 6.3205 

Detail 6.3005 -6.3406 -0.0200 8.7758 6.3205 

Individual 108.9136 91.0861 99.9999 8.9095 8.9137 

Moving Range 10.9495 0.0000 3.3516 6.2341 7.5980 

The approximation and detail coefficients variance are very close to the variance assumed in the simulation and the 

variance of individual observations. It becomes more accurate as sample sizes increase. The target line for the 

approximation coefficients chart is larger than the target line for the individual observations and moving average 
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charts. In contrast, the target line for the detail coefficients chart is close to zero and is equal to zero if there is no noise 

in the data according to the properties of wavelet analysis. 

11. Real Data 

A bank's mortgage loan processing unit “monitors the costs of processing loan applications. The quantity tracked is 

the average weekly processing costs, obtained by dividing total weekly costs by the number of loans processed during 

the week.” (Montgomery, 2011). 

Phase I Operation and Interpretation of the Charts.  

Appendix (Table I) shows the processing costs in the last 20 weeks whereas Figure 2 highlights the individual that is 

set up along with the moving range control charts for the data.  

 
Figure 2. Individual and Moving Range Charts for Real Data (Phase I) 

Figure 2 of the classical charts for the first time (Phase I) shows that all points are within the control limits. This means 

that these charts can be used to control qualitative characteristics (the average weekly processing costs) in future 

(Phase II). 

Figure 3 of the approximation coefficients chart for the first time (Phase I) shows that all points are within the control 

limits. This means that this chart can be used to control qualitative characteristics for approximation coefficients in 

future (Phase II). The detail coefficients chart shows that there is one point that is outside the control limits, so the kill 

(the coefficient equal to zero) or keep rule was used, and then the detail coefficients chart was created as in the 

following figure: 

Figure 4 of the modified proposed charts for the first time (Phase I) shows that all points are within the control limits. 

This means that these charts can be used to control qualitative characteristics for approximation and detail coefficients 

in future (Phase II). 
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Figure 3. Approximation and Detail Coefficients Charts for Real Data (Phase I) 

 
Figure 4. Modified Approximation and Detail Coefficients Charts for Real Data (Phase I) 

Table 4. Results for Real Data 

Chart UCL LCL Target Variance DF 

Approximate 438.3144 411.6280 424.9712 31.5556 13.3432 

Detail 11.8583 -14.8281 -1.4849 10.7167 13.3432 

Individual 321.2167 279.7833 300.500 43.4211 20.7167 

Moving Range 25.4482 0.0000 7.7895 38.6199 17.6587 

Tables (4) show the efficiency of the proposed charts compared to traditional charts, and the proposed charts obtained 

a minimum difference of (13.3432) for the approximation and detail coefficients of the Haar wavelet, compared to the 

individual and moving average control charts. The difference between the upper control limit and target line is equal 
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for the approximation and detail coefficients Haar wavelet charts. A variance of the approximation and detail 

coefficients is less than the variances of individual observations and moving averages, and this clarifies the efficiency 

of wavelet analysis and the reduction of data noise. The target line for the approximation coefficients chart is larger 

than the target line for the individual observations chart. In contrast, the target line for the detail coefficients chart is 

not equal to zero due to data noise. 

Phase II Operation and Interpretation of the Charts.  

Table II in the Appendix shows the costs of processing mortgage applications from weeks 21 to 40. It is seen that this 

data visualized in Figure 4, along with the moving range control chart created in Phase I. Figure 5 shows that around 

week 39, there was a noticeable rise in costs that is indicated by a "shift in process level" and is followed by an out-

of-control signal the next week. The moving range chart reflects this shift with a big spike at week 39, which helps in 

identifying the time when the average cost changed. To understand why this shift took place, one should investigate 

factors around week 39. Possible reasons could include temporary staff replacements due to vacations or an influx of 

applications needing extra manual review (underwriting work). It is important to interpret the moving range chart 

carefully as the data points are linked and might show patterns or cycles. 

 
Figure 5. Individual and Moving Range Charts for Real Data (Phase II) 

The charts proposed in Phase I were used to monitor the process in the following twenty weeks, as in Figure 6: 
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Figure 6. Approximation and Detail Coefficients Charts for Real Data (Phase II) 

Each point drawn on the proposed charts represents two observations (Figure 6). The approximation coefficients 

chart showed that there is one point (weeks 39 and 40) out of control, while the detail coefficients chart showed three 

points (weeks 21, 22; 25, 26; and 31, 32) outside the control limits, and this means there is a defect in the production 

process. 

The approximation coefficients chart revealed defects in the production process like the individual observations 

chart, and the detail coefficients chart revealed early defects in the production process (This can be seen from the 

difference between the value of weeks 21 and 22 and so on for the rest of the individual observations chart), this means 

the sensitivity of the chart in detecting minor changes that could occur in the production process, especially in the 

variance of observations, which was not specified by traditional charts (Individual observation and Moving average 

charts). 

12. Conclusions 

1. Differences (or variance) in the quality of the produced material can be controlled and monitored through the 

proposed detail coefficients chart, which is not available in traditional charts for controlling individual 

observations. 

2. The proposed charts were more efficient than traditional charts depending on the difference between the control 

limit that is upper, and the target line and the accuracy of the variance used. 

3. The proposed charts were more sensitive than traditional charts in detecting subtle changes that may occur in the 

production process. 

4. The proposed charts composed for the first time addressed the problem of data noise by using wavelet estimation 

which is more accurate than traditional charts. 

5. The approximation and detail coefficients charts of the Haar wavelet have equal efficiency due to the equal 

difference between the upper control limit and the target line is equal. 

6. There is no significant effect on the accuracy of constructing the proposed and traditional charts for the first time 

when the number of observations increases. In contrast, this accuracy decreases with increasing variance.  

7. For real data the approximation and detail coefficients and classical charts revealed defects in A bank's mortgage 

loan processing unit (monitors the costs of processing loan applications). 
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13. Recommendations  

1. Using the DWT coefficients for Haar wavelet in creating quality control charts to monitor the individual 

observations (corresponding to the Individual observations and the moving average charts) and controlling and 

monitoring the differences (or variance) in the produced material, which is not available in traditional panels for 

Individual observations. 

2. Conducting other studies to create charts of discrete wavelet transform coefficients for Daubechies wavelets, 

Coiflets, Symlets, etc. 

3. Conducting other studies to create charts of maximal overlap discrete wavelet transform coefficients. 
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Appendix 

Table I. Costs of Processing Mortgage Loan Applications  

Weeks Cost x Moving Range MR 

1 310  

2 288 22 

3 297 9 

4 298 1 

5 307 9 

6 303 4 

7 294 9 

8 297 3 

9 308 11 

10 306 2 

11 294 12 

12 299 5 

13 297 2 

14 299 2 

15 314 15 

16 295 19 

17 293 2 

18 306 13 



Iraqi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (127-140) 

 

 

140 

 

19 301 5 

20 304 3 

 X̅ = 300.5 MR=7.79 

Table II. Costs of Processing Mortgage Loan Applications, Weeks 21-40 

Week Cost x Weeks Cost  

21 305 31 310 

22 282 32 292 

23 305 33 305 

34 296 34 299 

25 314 35 304 

26 295 36 310 

27 287 37 304 

28 301 38 305 

29 298 39 333 

30 311 40 328 

 
 

 
 

 مراقبة الجودة المقترحة باستخدام معاملات مويجة هار لتحسين مراقبة الإنتاجلوحات 
 

 2طه حسين علي و 1بهروز أمين اسار 

 قسم الإحصاء والمعلوماتية، كلية الإدارة والاقتصاد، جامعة صلاح الدين، أربيل، العراق. 2,1
المتحرك، في أنها لا تركز على  المتوسط لوحة و مفردة الشاهدات الم لوحةمراقبة الجودة التقليدية، مثل  لوحاتتتمثل إحدى المشكلات الرئيسية ل الخلاصة:

جة هار والتي يمكن أن تركز بشكل أكبر  ي جديدة تعتمد على مو لوحات مراقبة الاختلافات في المواد المنتجة. لمعالجة هذه المشكلة، اقترح الباحثون إنشاء 
ي المتقطع  ج ي تحويل المو ال المقترحة الجديدة إلى طريقة    تلوحا التقليدية. تستند ال لوحات  البيانات التي تؤثر على دقة ال  ئيةوتتعامل بشكل أفضل مع ضوضا 

الاختلافات بين هذه    ى خر الأ لوحة  راقب الت)المعاملات التقريبية أو مرشح التمرير المنخفض( بينما    شاهداتالمالأولى تتناسب مع متوسط  جة هار.  يلمو 
البيانات لإنشاء حدود    ئيةالعتبة الشاملة لمعالجة ضوضا قطع  استخدام طريقة    )معاملات التفاصيل أو مرشح التمرير العالي(. لأول مرة، تم  شاهداتالم

دقة   نتائج. أثبتت الMATLABباستخدام برنامج    لوحاتالمقترحة. استخدم الباحثون كل من بيانات المحاكاة والحقيقية لتطوير هذه ال لوحات  التحكم في ال 
 البيانات وحساسيتها في اكتشاف التغييرات الطفيفة التي قد تحدث في عملية الإنتاج.  ئيةالتعامل مع ضوضا المقترحة ونجاحها في لوحات وكفاءة ال

 .لوحات السيطرة النوعية، التحويل المويجي المتقطع، المويجة هار، قطع العتبة الشاملة ولوحة السيطرة المفردة: الكلمات المفتاحية
 


