Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

Tragi][umdl
0f

Iragi Journal of Statistical Sciences Seutieival Sitnoe

http://stats.uomosul.edu.iq

Parallel Algorithm for Calculating the Integration

Ehab Abdulrazak Alasadi
Department of Quranic Science, Faculty of Islamic Science, Kerbala University, Kerbala, Irag.

Avrticle information Abstract
Avrticle history: Analysis and implementation of a parallel algorithm to calculate the integration of the
Eﬁifs'lﬁd.;:c'ﬁ nibsrofg 2024 function y=1/e to the x with a specified time interval. Design and implementation using
Accepted December 25, 2024 C/C++ is based on the sharing of memory among "THREADS." The "Pthread" library has
Available June 1, 2025 been used. Use of the output file to print information and the purpose of using the POSIX
Keywords: library .1t is to implement the program faster than the one nucleus, when it involves a set of
Parallel Program, processors (THREADS) where each thread is considered to be a processor. This accelerates
mrt‘;id' Shared memory the solution of the complex problems in the system that need a large memory, where time
sharing is used by Mutex. Lock and unlock through research prior to the use of parallel
programs and its memory sharing technigue to solve complex and large issues that require
a long time to be implemented. Using parallel programs, each thread carries a particular
Eﬁ;gﬁ‘:gg;ﬁ”cez issue and solves it, and the results are combined by reducing the time execution and
ehabalasadi@gmail.com increasing the speed of the system speedup according to the speed equation S=T1/Tn

DOI 10.33899/iqjoss.2025.187732 , ©Authors, 2025, College of Computer Science and Mathematics University of Mosul.
This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Threads are a key technology in the further development of Linux and Unix. Programming models that allow the use
of these threads provides benefits for both client and server programs. Programs like Netscape Navigator are proof of
the power of multithreaded programming using POSIX threads. Threads provide a natural programming model for
applications requiring parallel execution (Jones,2025).

In order to achieve the maximum potential offered by fibers, it was necessary to standardize the programming interface.
In UNIX operating systems, such an interface was specified by the IEEE POSIX 1003.1¢c-1995 standard, which
culminated in "POSIX threads" or "PThreads". PThreads define a set of types and functions for the C programming
language that are implemented in the pthread.h header file and the library.(Anton and Rorres,1996)

The advantages of threads are compared to processes in the price of creation and maintenance, threads can be created
at much lower system costs. Thread maintenance requires less system resources than process maintenance. Another
advantage is that all threads in a process share the same address space. Communication between threads is more
efficient and, in many cases, easier to implement than communication between processes (David,1997).

The first argument in pthread_create() is a variable that holds the address that reference to the thread want to create,
and the second argument is which typed to pthread_attr_t is a variable that let us address the attributes of the thread
such as priority. The third argument need to supply to this system call is a function pointer that let the kernel knows

https://stats.uomosul.edu.iq/article_187732.html
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0004-1766-648X

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

where the thread should begin from and the fourth argument is the parameter would like to pass to the function that we
are going call from this thread.

During the past five years, most of the research has focused on using parallel programs to process large amounts of
information and problems and solve complex problems that require large memory by using PTHREADS and PVM
(Parallel Virtual machine) for sharing memory and memory synchronization among computers and return the results
to master computer and that allows programmers to run large-scale projects that require speed and accuracy because
its will reduce the execution time and increase the system Acceleration and the results show increase the numbers of
thread will increase the system speedup and efficiency.

1.2 Problem define

To calculate a definite integral ,[Jones,2025].

1= [, f(x)dx)
When [a,b] specify the interval
f(x), algebraic expression in variable 'x'
1= Integral functions given by functional values at equidistant points (nodes), Newton-Cotes quadrature formulas are
most often used. The most famous representatives of this class of methods are the trapezoidal method and Simpson's
rule.
To calculate the definite integral of the function f(x) in the interval <a,b> using equidistant points, the following is set:
where n is the number of equal parts into which we divide the interval <a,b>. This is how equidistance points are
obtained:
x0=a,xi=x0+ih(i=1,2,..,n1),xn=h,
for which functional values yi = f(xi), i = 1, 2, ... n are calculated.
1.3 Trapezoidal Method
The trapezoidal method is characterized by slow convergence of the numerical process with relatively low accuracy
o(h)"2.

1 1
I= I+ Ry Ty = ho(5£00) + FG) + o+ fOmn) +5 £ Cin) @
This results in a large calculation error:
_ b-ap* (b—a)’
RL__Tf (f)——wf) 3)

where & belongs to <a,b>
Its well-known geometric interpretation is the sum of the contents of trapezoids, which are formed by nodal points
and their functional values. The integral is calculated using a piecewise linear approximation, which does not take into

account the nature of the curvature of the function between nodal points (Perhiyar et al.,2019).

10

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

A Y

fia)

Fig (1) Trapezoidal formula
2 Proposed Designs
To calculate the integral of the function y = 1/ e*x on the given interval. For the calculation of the integral, |
The trapezoidal method was chosen from among the numerical methods because it is an easy-to-understand method
that provides the possibility of performing the calculation in parallel. The input to the program will be user-specified
interval bounds and x, which are numbers of type "double"
2.1 Description of Proposed Solution
1) Read the interval and the number x, which are entered as program arguments.
2) calculation of the number h, according to h = (b-a)/N, where N is the number of equal parts into which we divide
the given interval, and in the program, N is also equal to the number of running threads performing the calculation,
3) the main program starts N threads with arguments specifying the boundaries of sub-intervals and the value of x,
4) each running thread performs the calculation of the integral of the function y = 1/e”x by the trapezoidal method,
where N is much larger this time (on the order of 1000) and performs the calculation independently without creating
additional threads,
5) individual threads calculate integrals on partial intervals and add the result to a common variable determining the
total value of the integral, access to this variable represents a critical area in the program,
6) the program prints the result of the integral.

11

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

preprocessor directives
I

Parse arguments
1=0

Open status.txt

Calculate step size

(h)

Initialize mutexs

Start time
measurment

Create Threads N
THREAD Calculate

Join Threads

Print and write resuls

Fig (2) Program flowchart

12

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

2.2 Divide tasks Among the Nodes

Since the total calculation of the integral by the trapezoidal method consists of the sum of the functional values of the
divided original interval, the calculation of the sum can be performed in parallel. This can be done in two ways:

1) The specified interval will be divided into a large number of smaller ones, and the sum calculation will be performed
by starting the same number of threads as the number of intervals. Then each thread computes a function f(xi) where
xi=za+ih,i=0,1, .., N. The disadvantages are that a large number of threads would have to be created to implement
a trivial function, causing unnecessary overhead system and high lag.

2) The second way is to divide the specified interval of the integral into a smaller number and start the same number
of threads. Each thread will now perform the calculation of the integral using the trapezoidal method on the subinterval
determined by the main program. This way of doing it is better because it creates a smaller number of threads that can
calculate the partial integral fast enough since it is a simple cycle. This will also reduce the overhead and maintenance
of access to the critical area.

2.3 Communication and Synchronization

Synchronization and communication between the main program and threads is implemented using the "PThread"
library. The input values of individual threads are specified as arguments when creating threads with the pthread_create
command, and their output is the resulting partial integrals, which are calculated in a common variable that represents
the shared memory. This variable and the common file for auxiliary outputs are critical areas in the program as data
inconsistencies can occur. The solution to this question is offered by the synchronization functions of the "PThread"

library: pthread_mutex_lock, pthread_mutex_trylock and pthread_mutex_unlock.(Bharun at el.,2022).

During computation, the program enters two critical areas when threads access a shared variable and a shared file for
auxiliary statements. | solved it using two locks I_mutex (for a variable) and file_mutex (for a file), the use of which
in the thread is as follows:

pthread_mutex_lock (&I_mutex); //. lock variable |

pthread_mutex_unlock (&I_mutex); //unlock variable |

pthread_mutex_unlock (&file_mutex); //unlock the file.

Program Compilation

Compilation of the program is done with the command:

Arguments: pthread_dps2e [-h] [a b N {number of threads}]

I/l -h : help for the program usage

/l a : lower limit of the interval of the integral

/b : upper limit of the interval of the integral

/I N : division of the interval in the Threads

pthread dps2e [-h] [ab N {10}]

13

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

Calculation of the integral on the interval (0.000000, 2.000000) on 10 fibers. THREAD O0: entering the
critical region

THREAD 0: It =0.181269

THREAD O0: leaves the critical region THREAD 1: entering the critical region THREAD 1: It =
0.148411

THREAD 1: leaves the critical region THREAD 2: entering the critical region THREAD 2: It =
0.121508

THREAD 2: leaves the critical region THREAD 3: entering the critical region THREAD 3: It =
0.099483

THREAD 3: leaves the critical region THREAD 7: entering the critical region THREAD 7: It
0.044700

THREAD 7: leaves the critical region THREAD 8: entering the critical region THREAD 8: It =
0.036598

THREAD 8: leaves the critical region THREAD 9: entering the critical region THREAD 9: It
0.029964

THREAD 9:leaves the critical area

The argument {number of threads} is optional, if not specified the program will be executed with 10 threads. Help is
displayed to the user even if the number of arguments is incorrect. The program creates a "status.txt" file, where records
of the calculation status, or threads, if the file already exists records are added to it.

3 Program Testing

The program was tested for different values of the input intervals (a, b), the result was verified using the relation that
realizes the calculation of the integral. The accuracy of the calculation varies according to the entered N.

The program is treated for the inputs a, b when they are given in the wrong order and the input indicating the number
of executable threads when it is given as 0.

The calculation of the integral is realized in an acceptable time if N is not greater than 2,000,000.

4 Model PRAM

In order to calculate the acceleration in the parallel calculation of the integral by the trapezoidal method on N
processors, he

The time complexity, work, and cost of the sequential and parallel algorithm need to be calculated (Fang at el.,2024)
The sequential approach to task implementation is shown by the RAM model:

h = (b-a)/N;
I = h* ((pow(e, -a) + pow(e, -b)) / 2);
for (int j=1; j<N; j++)

Then, for the resulting time complexity Ts(N):

14

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

int thr double a
double b int N
mydata->thr; mydata->a; mydata->b;
mydata->N; //rozdelenie intervalu
double h;
double e = exp (1); //cislo e
double 1t=0; //vypocitany integral vlakna
double suma=0; //pomocnha suma
h=(b-a)/N;
/lcalculate integral LICHOBEZNIKOVOU METODOU
It h*((pow(e, -a) + pow(e, -b)) / 2); I/ h*[(fa+fb)/2]
for (int j=1; j<N; j++) // suma (1..N-1) [f(xj)] suma + pow(e, - (a+ j*h)); //xj= a+ h*j
It+=h*suma;
/lenter to critical area
pthread_mutex_lock (&I_mutex); //lock | pthread_mutex_lock (&file_mutex); //lockfile
if ((file = fopen("status.txt™, "a"))
== NULL)
fprintf(stderr, "Cannot open input file. \n");
number of processors P(N, 1) =1
number of steps T(N, 1) = O(1) + O(1) + O(N) + O(1) = O(N)
work W(N, 1) = O(N)
price C(N, 1) =T(N, 1) . P(N, 1) = O(N) . 1 = O(N)
A parallel integral calculation algorithm based on a CRCWPRI type PRAM model is being considered
h = (b-a)/N;
I = h* ((pow(e, -a) + pow(e, -b)) / 2);
for (int j=1; J<N; j++)
pardo sum +=pow (g, - (a+ j*h));
| +=h * sum;
Then for the resulting time complexity T(N):
number of processors P(N) =p =N
number of steps T(N, p) = O(1) + O(1) + O(1) + O(1) = O(1)
work W(N, p) = O(N)
price C(N, p) = T(N, p) . P(N, p) =0(1) . N=O(N)

15

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

From this we get the theoretical acceleration:(Sp):;—: = 4)

When Ts:Time at 1 process
Tp:Time at n process

Time calculated see Table (1)
Sp=T(1)/Tp=4.837/4.297=1.125
5 Evaluation of the Implementation
The program is implemented in the Linux environment in the C++ language and with the g++ compiler according to
the assignment specification. The program uses the libraries "sys/time.h™ for time calculation, "math.h" for
mathematical functions necessary for calculation, and "PThread.h", which defines a set of types and functions for the
C programming language for working with threads.
The calculation execution algorithm is implemented according to the design of the solution only with changed input
data entered as arguments. The user must enter in order the limits of the interval (lower and upper), the number N,
according to which the interval will be divided into N equal parts in individual threads, and the number of threads to
perform the calculation. The argument specifying the number of threads is optional, if not specified by the user, 10
threads will be created.
Each thread performs the calculation of the integral using the trapezoidal method on the interval determined by the
main program. These intervals are divided according to the number of threads that will solve the task. The input data
for threads is given by a structure as its argument:
struct thread_data{int thr; //thread number (index)
double a; //lower limit of subinterval
double b; /fupper limit of subinterval
int N; //how many parts the interval will be divided into
During computation, the program enters two critical areas when threads access a shared variable and a shared file for
auxiliary statements. |
It was solved by using two locks i_mutex (for a variable) and file_mutex (for a file), the use of which in the thread is
as follows:
pthread_mutex_lock (&l_mutex); //lock variable |

pthread_mutex_lock (&file_mutex); //lock the file
{critical area}
pthread_mutex_unlock (&I_mutex); //unlock variable |
pthread_mutex_unlock (&file_mutex); //unlock the file.

In athread, these critical areas overlap, so one lock might be enough, but with two locks, for example, the main program
writes the entry to a common file, while some free thread “reserves™ the result write by locking access to the variable
It won't be overtaken by another thread ifhad to fall asleep that way.

The calculation time is measured using the gettimeofday(struct timeval &T, NULL) function of the "sys/time.h" library.

16

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

Tablel (Speedup at N process measurements)

Number of Threads 1 5 10
1 Real time Real time Real time
2 4.164 2.137 8.277
3 2.4044 3.54 6.293
4 8.709 4.835 2.629
5 4.074 6.676 25
Average 4.837 4.297 4.924
Speedup 1.125 1.072
SpeedUp
60
50
40
30
20
. L
. I
1.125 0.872 0.905 1.326

Fig(4) Speedup vs No of Threads
6. Conclusion
Solving this task gave a better insight into the issue and the way to implement calculations on multiprocessor systems,
as well as programming using shared memory.
From the achieved results for the PRAM models, it can be seen that the algorithm is designed optimally, since the
prices of both approaches shown by the RAM and PRAM models have the same asymptotic bounds.
Even if the parallel approach to the calculation of the integral on multiprocessors achieves a theoretical speedup, it will
never be achieved when it is implemented using threads, as the program
runs on one computer, resulting in higher overhead costs than with the sequential approach.

Acknowledgment

The author is very grateful to the University of Mosul, and College of Computer and Mathematical Science, which helped
improve this work's quality.

17

Iragi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (9- /8)

Conflict of interest
The author has no conflict of interest.

References

arwn

S

10.

Jones, L., 2025. “Concurrency and Multithreading in C: POSIX Threads and Synchronization”. Independently
published.

Anton, H. and Rorres, C., 2013. Elementary Linear Algebra: Applications Version. 11th ed. Hoboken: Wiley.
Dick. B,et al,”1996”, PThreads Programming: A POSIX Standard for Better Multiprocessing , O'Reilly Media.
David.B,* 1997”,Programming with POSIX Threads, Addison-Wesley Professional,.

W. S, Stephen .R,”,”2013”,” Advanced Programming in the UNIX Environment”, Addison Wesley
Professional.

Hesham EI-Rewini ,”2008”, “Advanced Computer Architecture and Parallel Processing”, Wiley-Interscience.
Bharun, N.F., Alias, N., Ismail, F.S., Saipan, H.F. and Suardi, M.S., 2022. "Performance Analysis of Parallel
Virtual Machine in Solving Large-Scale Multi-dimensional Problems. In: Control, Instrumentation and
Mechatronics": Theory and Practice, Lecture Notes in Electrical Engineering, vol. 921. Singapore: Springer.
Fang, Y., Zhou, Z., Dai, S., Yang, J., Zhang, H. and Lu, Y.,” 2024”. PaVM, “A Parallel Virtual Machine for
Smart Contract Execution and Validation”. IEEE Transactions on Parallel and Distributed Systems.

Schryen, G., 2022. “Speedup and efficiency of computational parallelization”, A unifying approach and
asymptotic analysis. arXiv preprint Available at: https://arxiv.org/abs/2212.11223.

Kaur, G.A. and Kumar, P., 2016. “Performance analysis of scheduling algorithms in simulated parallel
environment”. International Journal of Innovative Research in Computer and Communication Engineering.

bl JalSal) ciluaad Aulia i s

O LY 2o Gl

Al ¢ DS ¢ oS Anala B askell LIS ¢ A asle aud

e 2y (C/CH+) Axl alaiuls My e coma il duales y=1/@MXAA JalS5 Glaad djlsie daa)lod kg Jalas duadlAl)
) 558y sl Jilasdl) (g0 mpalls lasleal) delilal 7)Y Cila Hlasiuds 'PThread'. 4 alasiul 55 THREADS' ¢y 8,131 48 Lia
Time execution amll ey Jals el A3l aaead Jig lglag alina Alss Jon Jasd IS o688 Llgall gmabll alodinls. 2asll Jigha g o a3
Baalgll Bleill e el I8 malinll 2 s POSIX 43Ka aladiud. S=T1/Tn dejudl dliles Caves SYstem speedup aUail deyus 5aliis
s zlins A i) 8 sseall JSLa U (e g 1305 llae i Tk IS ity Cum (THREADS) clallaall (e de gane i) vied
Aty Aujlgall pralyl) ahadiny daludl Gl P 0 Mutex. Lock and unlock alaaiuls saaly JS3 il A5l 2 s 5508 550
LAl 580 S L

LiSaa) 5513 (Pthead ¢(g)sall zaliydl s dualidall cilalsl)

18

https://arxiv.org/abs/2212.11223

