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ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAS) are popular recreational drugs. It has been suggested
that indole-containing SCRAs may have activity at several serotonergic targets, owing to their structural
similarity to the neurotransmitter serotonin (5-HT). This similarity may be responsible for features of
toxicity similar to serotonin syndrome observed in cases of SCRA intoxication. To determine whether
indole-SCRAs have activity at serotonergic targets we investigated the effect of JWH-018, an indole-
containing SCRA, with a non-indole-containing SCRA (CP55,940) and an endocannabinoid
(anandamide) on 5-HT neuronal functions in rat brain slices; 5-HT neuronal activity was examined
using in vitro extracellular single-unit electrophysiology in the dorsal raphe nucleus and 5-HT
presynaptic uptake was examined using radiolabeled 5-HT(®[H] 5-HT) in the hippocampus. 5-HT
(50uM) inhibited the 5-HT neuronal firing rate but JWH-018 (50uM) had no effect on the basal or
NMDA (30uM) augmented firing rate. In contrast, anandamide (10uM) increased the NMDA-
augmented firing rate of 5-HT neurons, but not the basal rate. The selective serotonin reuptake inhibitor
fluoxetine (0.001 — 10 uM) inhibited 5-HT reuptake but JWH-018 (0.001 — 10 uM) had no effect on
serotonin uptake. Our data suggest that indole-SCRAs and non-indole SCRAs do not directly interact
with serotonergic targets in either the dorsal raphe nucleus or hippocampus. Further mechanistic studies
are needed to determine if SCRAs affect serotonergic neurotransmission through the modulation of
afferents to 5-HT neurons.
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INTRODUCTION

Synthetic cannabinoid receptor agonists
(SCRAs) are  novel  psychoactive
substances that have become popular as
recreational drugs. Recently, increasing
numbers of SCRA users are presenting to
emergency departments with severe acute
intoxication (Waugh, Najafi, and Hawkins
2016). Like A9-tetrahydrocannabinol (A9-
THC), the major psychoactive component
of cannabis, SCRAs activate cannabinoid 1
receptors (CB1Rs). SCRA intoxication has
been associated with clinical features
consistent with serotonin (5-HT) toxicity
(Louh and Freeman 2014; Papanti D.
2015). Serotonin toxicity is seen in
overdoses of drugs that inhibit uptake,
attenuate metabolism or promote the
release of 5-HT or act as agonists at 5-HT
receptors (Boyer and Shannon 2005).

CBiR modulation of 5-HT
neurotransmission is complex and there are
conflicting reports of inhibitory, excitatory,
and no effect at various 5-HT targets (Fisar
2012). Conflicting indirect effects on
serotonergic neurotransmission have also
been observed: the activation of inhibitory
CB:iRs on GABAergic interneurons

A
NIy

reduces their inhibitory influence on dorsal
raphe nuclei (DRN) 5-HT neurons,
increasing 5-HT release (Tao and Ma 2012;
Geddes et al. 2016; Mendiguren and Pineda
2009), whilst activation of CB1Rs on 5-HT
neuronal terminals inhibits 5-HT release
(Nakazi et al. 2000). Many recreational
SCRAs contain an indole moiety, which is
found in serotonin and other substances that
activate serotonin receptors or act as
substrates for the serotonin reuptake
transporter (see Figure 1; Papanti 2015). It
has been suggested that indole-containing
SCRAs, in addition to the theCB:R effects
discussed above, could mimic serotonin
and precipitate serotonin toxicity (Papanti
2015). In this study, we evaluated the
effects of JWH-018, an indole-containing
SCRA, on serotonin neuronal functions to
determine if it acts as a mimic of serotonin
or drugs targeting the serotonergic system.
Rat brain slices containing serotonin
neuronal cell bodies in the dorsal raphe
nucleus, and presynaptic terminals in the
hippocampus were used. This allowed us to
evaluate several serotonergic responses,
across multiple brain areas within locally
intact neural architecture.

Figure 1. A. Serotonin (5-HT). B. JWH-018. The indole core of each molecule is highlighted in red.
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MATERIALS AND METHODS

Animals

Experiments were conducted in accordance
with the Animals (Scientific Procedures)
Act 1986 and the European Union Directive
(2010/63/EC). Adult male Lister Hooded
rats (Charles River, UK; n = 18) housed as
previously described (Judge, Ingram, and
Gartside 2004) overdosed with isoflurane
and the brain was rapidly removed. Coronal
slices were cut in ice-cold oxygenated
sucrose slush using a vibrating microtome.

Drugs

The drugs N-arachidonoylethanolamine
(anandamide), naphthalen-1-yl-(1-
pentylindol-3-yl)methanone  (JWH-018)
and 2-[(1R,2R,5R)-5-hydroxy-2-(3-
hydroxypropyl) cyclohexyl]-5-(2-
methyloctan-2-yl)phenol (CP55, 940) were
purchased from Tocris Bioscience (UK);
NMDA, phenylephrine and serotonin were
purchased from Sigma-Aldrich (UK).

Electrophysiology Studies

Slices (300 pM) containing the DRN
(bregma -7.6mm to -8.3mm) were perfused
with oxygenated artificial cerebrospinal
fluid (aCSF) containing the  o-
adrenoceptor agonist phenylephrine (10
pUM) to simulate in vivo firing (Gartside et
al. 2007; Judge, Ingram, and Gartside
2004). The extracellular activity was
recorded from neurons displaying the
electrophysiological characteristics of 5-
HT neurons (Judge, Ingram, and Gartside
2004; Gartside et al. 2007). Neurons
inhibited by 5-HT were classified as 5-HT
neurons (n = 52; 63.2 = 3.7% inhibitory
response). In some experiments N-methyl-
D-aspartate (NMDA)

was applied for 2 minute periods to activate
CB1R expressing GABAergic inputs to the
5-HT neurons (Tao and Ma 2012;
Mendiguren and Pineda 2009) which are
normally silent in the DRN brain slices

(Judge, Ingram, and Gartside 2004,
Gartside et al. 2007). Responses to drug
applications were expressed as a percentage
of baseline firing rate, except excitatory
NMDA responses which expressed as extra
spikes. Drug (or vehicle) responses during
NMDA augmented firing were then
calculated as a percentage of the control
NMDA response. Outliers (> mean + 2SD)
were removed from the analysis (n = 3).
Within neuron, comparisons were made
using paired t-tests or Wilcoxon signed
ranks tests. Data are expressed as mean +
SEM.

Uptake Studies

Left and right dorsal hippocampi were
dissected from coronal slices (400 pM;
bregma -3 to -4.5 mm, 7-8 per rat), weighed
(5.6 £ 0.2 mg, n = 151), and incubated in
oxygenated aCSF (34 °C) for 30 mins.
Slices were then incubated for 30 mins with
drugs (or vehicle) and 3[H]5-HT (8.6 nM,
26.2 kBq, PerkinElmer). °3[H] was
measured in incubation media and slices
(incubated overnight in perchloric acid) in
a scintillation counter. 5-HT uptake (Tissue
(DPM/mg) / Media (DPM/ml)) for each
hippocampi was calculated and non-
specific uptake (ice control) subtracted
(0.38 £0.06 T:M; n = 18). Average control
uptake was 151 + 1.3 T:M (n = 24).
Outliers (> mean + 2SD) were removed
from the analysis (n = 2). ANOVAs were
used to make comparisons between drugs.
Data are expressed as mean + SEM.

RESULTS

JWH-018 does not change 5-HT
neuronal firing rate in the dorsal

raphe nucleus.

The basal firing rate of the 5-HT neurons
was 1.8 £ 0.1 Hz (n = 52). 5-HT inhibited
the basal firing rate, whereas JWH-018 and
the CB1R agonist anandamide had no effect
(Figure 2A-B). To determine if JWH-018
affects 5-HT neuronal firing when
GABAEergic inputs are activated, NMDA
(30 pM) which is known to activate
GABAEergic terminals (Judge, Ingram, and
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Gartside 2004) was applied. NMDA alone
briefly increased the firing rate of 5-HT
neurons by 143 + 13 extra spikes (n = 38);
repeated application of NMDA alone did
not affect the NMDA-augmented firing rate
(p =0.14; n = 13). JWH-018 (3 min before
and 2 min during NMDA application) and a
non-indole-containing SCRA, CP55, 940,
did not affect NMDA-augmented firing
activity (Figure 2C-F). In contrast, the

Vol.19, No.1, 2022

application of the endogenous cannabinoid,
anandamide (3 min before and 2 min during
NMDA application) increased the NMDA-
augmented firing rate (Figure 2F). Neither
the JWH-018 / CP55, 940 vehicle, DMSO
(0.25%; 5 min; p=0.92; Z-0.1; n = 16) nor
the anandamide vehicle, ethanol (0.07%; 5
min; p = 0.74; Z -0.3; n = 7) affected
NMDA-augmented firing rate.
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Figure 2. JWH-018 does not change the 5-HT neuronal firing rate in the dorsal raphe nucleus. A,
B. 5-HT (50 uM; 2 min) inhibited the firing activity of 5-HT neurons in the DRN (A, n =10, p < 0.001;
B, n=5, p<0.01), but IWH-018 (A, 50 uM; 2 min) and anandamide (B, 10 uM; 2 min) had no effect on
the firing rate of the same neurons. C. Average 5-HT firing activity. D, E, F. Individual firing activity in
the absence (-) and presence (+) of agonists. NMDA-augmented firing activity (expressed as extra spikes)
was not significantly affected by JWH-018 (D, 50 puM, 5 min; n = 9; p = 0.09; Z -1.7) or CP55,940 (E,
50 uM; 5 min; n =7; p = 0.09; Z -1.7) but was increased by anandamide (F, 10 puM; 5 min; n = 8; p <
0.05; Z -2.5). Data shown are mean = SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

JWH-018 does not inhibit 5-HT uptake
at presynaptic terminals in the
hippocampus.

The selective serotonin reuptake inhibitor
fluoxetine (0.1 — 100 pM) dose-
dependently inhibited 3[H] 5-HT uptake
into 5-HT neuronal presynaptic terminals
(Figure 3A), whereas JWH-018 (0.001 - 10
MM) did not. To determine if the lack of
effect of JWH-018 on 5-HT uptake was due

to counteracting mechanisms of action, the
effect of JWH-018 on 5-HT uptake was
examined in the presence of the monoamine
oxidase inhibitor pargyline and the CB1R
antagonist rimonabant. Pargyline increased
control 5-HT uptake by 34 % (15.1 + 1.3 [n
= 24] vs 20.3 £ 2.0 [n = 10]). Neither JWH-
018 nor CP55, 940 affected 5-HT uptake in
the absence or presence of rimonabant
(Figure 3B).
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Figure 3. JWH-018 does not inhibit 5-HT re-uptake in the hippocampus. A. Fluoxetine inhibited 3[H] 5-HT
uptake into rat hippocampal terminals (Fs11 = 49.4; p > 0.001; n = 3 slices per concentration), whereas JWH-018
did not (Fse3= 1.5; p =0.2; n = 6 to 16 slices per group). B. In the presence of pargyline (10 uM) neither JWH-
018 (10 uM; F212 =0.08; p = 0.92; n = 4 slices per concentration) nor CP55,940 (10 uM; F22, = 0.04; p = 0.96;
n = 6 to 8 slices per group) affected 5-HT uptake with or without rimonabant (1 uM). Data shown are mean +

SEM.
DISCUSSION

Little information is known about the effects
of SCRA on serotoninergic systems in the
brain. The understanding of the impact of
cannabinoids on serotonin could help to
understand the interaction between the two
systems.

In the DRN, 5-HT neuronal firing decreases
in response to 5-HT, 5-HT1a agonists, and 5-
HT reuptake inhibitors (Egashira et al. 2002)
and monoamine oxidase inhibitor agents
(Evans et al. 2008). In the hippocampus, 5-
HT reuptake decreases in hippocampal pre-
synaptic terminals in response to 5-HT and
5-HT reuptake inhibitors and increases with
monoamine oXxidase inhibitors (Azmitia and
Marovitz 1980; Blackburn, French, and
Merrills 1967; Ross and Renyi 1969). Our
data suggest that JWH-018 does not activate
5-HT:1a receptors, nor does it act as a
substrate or block the hippocampal 5-HT
reuptake transporter or inhibit monoamine
oxidase. The lack of effect at neuronal cell
bodies or presynaptic terminals indicates
that serotonergic neurons are unlikely to be
the primary site of action of SCRAs for the
observed features of serotonin toxicity. A
study demonstrated that 5F-ADB, an
indazole analogue of JWH-018, did not have
effects on midbrain serotonergic neuron
firing rate (Asaoka et al. 2016) consistent
with our data. Velenovska et al. (2007)

investigated the effect of cannabinoids on 5-
HT function on platelets from chronic
cannabis smokers (Velenovska and Fisar,
2007). They reported that high
concentrations of cannabinoids (A9 THC,
anandamide and WIN 55,212-2) can inhibit
5-HT transporter activity acutely. This
inhibition is non- competitive, which
indicates that cannabinoids indirectly
inhibited 5-HT transporter activity through
the changes on membrane lipids. Although
studying 5-HT uptake using platelets models
has been shown to be a successful method
(Stahl and Meltzer, 1978, Lesch et al., 1993),
it does not represent the complexity of the
brain where there is an integration and
interaction between different receptors,
neurotransmitters and /or transporters. In
addition, Velenovska noted that high
concentrations of tested cannabinoids are
required to induce 5-HT uptake inhibition. In
contrast, this study tested 5-HT uptake in rat
brain hippocampus, where most of the
serotonergic features are expressed.

The possible serotonergic effects of
cannabinoids may be mediated through
modulation of projections to serotonin
neurons from other brain areas (Geddes et al.
2016), however, our evidence would suggest
GABAergic inputs are not responsible.
Further mechanistic studies should be
conducted to evaluate the effects of SCRAS
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on projections to serotonergic neurons from
other brain areas.
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